伺服驱动器与变频器的对比
以下内容由北京高控为您提供,今天我们来分享伺服驱动器的相关内容,希望对同行业的朋友有所帮助!
目前,在工业应用上来说,速度控制和力矩控制的场合要求不是很高的一般用变频器,在有严格位置控制要求的场合中智能用交流伺服驱动器来实现,还有就是伺服的响应速度远远大于变频,有些对速度的精度和响应要求高的场合也有用交流伺服驱动器控制,伺服驱动器结构,也就是说,能用变频控制的运动的场合几乎都能用交流伺服驱动器取代。
交流伺服驱动器作为现代工业自动化与运动控制的支撑性技术之一,由于其高速控制精准、调速范围广、动态特性和效率高,广泛应用于机床、印刷设备、包装设备、纺织设备、橡塑设备、电子半导体、风电/太阳能等新能源以及机器人、自动化生产线等领域。
但是,交流伺服驱动器发展了变频技术,交流伺服驱动器借鉴并应用了变频的技术,在直流电机的伺服控制的基础上通过变频PWM方式模仿直流电机的控制方式来实现的,也就是说交流伺服电机必然有变频的这一环节。与变频器一样,也是将工频交流电先整流成直流电,然后通过可控制门极的各类晶体管(IGBT,IGCT等)通过载波频率和PWM调节逆变为频率可调的交流电,波形类似于正余弦的脉动电。
伺服驱动器究竟是什么,与过程控制的温度调节器有什么不同?
伺服驱动器究竟是什么东西呢,其实本质上就是个PID调节器,那么它与所谓过程控制的调节器有什么区别呢?过程控制调节器本质上也是PID调节器,一般来是说是用于严重滞后性的系统,系统的稳定需要一定的时间,比如说温度控制。这个时候调整PID各参数对应的作用就不能往大处调整,不然的话,可能温度***终不能稳定下来,系统始终处于来回调整中。另外过程控制调节器一般来说是单回路的PID,执行器件一般都是一些阀门,温度控制的话执行器件一般是固态继电器控制的电热丝。过程控制的检测元件一般来说都是一些个压力传感器,热电偶,流量传感器等等,并且一般都是模拟量信号的。而伺服驱动器则不同,首先伺服驱动器都是多回路,比如一般就有位置环,速度环和电流环。另外伺服驱动器的不同是还有功率放大环节。至于伺服驱动器的参数调整,一般情况下则可以简单的描叙为在系统不发生震荡或系统没有明显的音响的情况下将PID各作用调整得以满足高响应性。当然根据伺服的具体应用环境也有例外,比如对响应性要求不高的场合,kollmorgen伺服驱动器结构,而负载的转动惯量有很大的情况,并且还需要进行比较频繁的正反转或者说是启停,那么这个时候就需要将伺服环路参数调整得小一点。伺服系统当然也有滞后,但主要是机械系统的惯性。伺服系统的检测元件一般来说则是光电编码器或旋转变压器,而执行器件则是伺服电机。
伺服驱动器电子齿轮比的设置的问题?
这里首先要区分伺服的控制方式,当然这里假定伺服是以接受脉冲的方式来控制的(伺服如果以总线的方式来控制的话,伺服驱动器就不用设置电子齿轮比了,但是在上位系统中却会有另外一个东西需要设置,这个东西就是脉冲当量,本质上和伺服驱动器的电子齿轮比是一回事),然后还有伺服是位置控制方式还是速度控制方式或力矩控制方式的问题,如果伺服是速度控制方式或力矩控制方式的话,显然电子齿轮比的设置就失去了意义。也就是说电子齿轮比的设置仅在位置控制方式的时候才有效。还有个问题就是伺服是作为直线轴还是作为旋转轴来使用。对于绣花机来说,X轴,Y轴,M轴,SP轴都是直线轴,因为大豪上位认为是1000个脉冲为一转,所以对于这些轴的电子齿轮比的设置实际上是机械减速比与8的乘积,而对于D轴,H轴来说,则是旋转轴,大豪上位认为8000个脉冲对应360度,所以电子齿轮比设置为8000/360=200/9。对于弹簧机各轴来说,其实也存在直线轴和旋转轴的问题,交流伺服驱动器结构,比如凸轮轴,螺距轴,切刀轴就是旋转轴,而送线轴则是直线轴,不过实际上在伺服驱动器里电子齿轮比一般设置为1/1,而将电子齿轮比的功能的设置放在弹簧机上位上进行,当然在弹簧机上位里换了个叫法,叫着解析度,解析度分子的计算,旋转轴(凸轮轴,螺距轴,切刀轴)=360乘以100,直线轴(送线轴)=圆周率乘以直径乘以100;解析度分母的计算:伺服马达编码器的分辨率*信号倍率*齿轮比。
版权所有©2024 产品网