光电探测器的历史发展
1873年,英国发现硒的光电导效应,但是这种效应长期处于探索研究阶段,未获实际应用。随着半导体的发展,各种新的光电导材料不断出现。在可见光波段方面,到50年代中期,性能良好的硒化镉光敏电阻和红外波段光电探测器都已投入使用。60年代初,中远红外波段灵敏的Ge、Si掺杂光电导探测器研制成功,典型的例子是工作在3~5微米和8~14微米波段的Ge:Au(锗掺金)和Ge:Hg光电导探测器。60年代末以后,HgCdTe、PbSnTe等可变禁带宽度的三元系材料的研究取得进展。 工作原理和特性 光电导效应是内光电效应的一种。
以上内容由北京和力达科技有限公司为您提供,今天我们来分享光电探测器的相关内容,希望对同行业的朋友有所帮助!
掺铒光纤单光子源的研究
北京和力达科技有限公司致力于激光检测及高速信号采集和处理服务,我司主要提供极弱光检测及检测相关的产品应用和提供服务。单光子源在量子物理学和量子通信中有着极其重要的作用,在量子光学所涉及到的光源中是一种很基本的光源,有着很普遍的应用。自研究人员发现单光子源的重要性,量子信息科学领域中对于单光子源和单光子探测器的研究出现爆发式增长。量子信息科学涉及到编码、通信、处理和利用量子力学粒子测量信息。研究表明量子计算中利用量子比特比经典粒子有着更高的安全性。单光子源的制备已经在很多材料或系统中实现:单原子、单分子、量子点和色心等,单光子源在量子力学基础实验和量子计算以及光量子信息处理中有着很重要的应用。
想了解更多单光子探测仪的信息,单光子价格,欢迎拨打图片上的电话与我们联系。
光电探测器的分类与应用
光电探测器能把光信号转换为电信号。根据器件对辐射响应的方式不同或者说器件工作的机理不同,光电探测器可分为两大类:一类是光子探测器;另一类是热探测器。光电探测器件的应用选择,探测器结构实际上是应用时的一些事项或要点。在很多要求不太严格的应用中,可采用任何一种光电探测器件。不过在某些情况下,选用某种器件会更合适些。例如,当需要比较大的光敏面积时,可选用真空光电管,因其光谱响应范围比较宽,故真空光电管普遍应用于分光光度计中。当被测辐射信号微弱、要求响应速度较高时,采用光电倍增管,因为其放大倍数可达10^4~10^8以上,这样高的增益可使其信号超过输出和放大线路内的噪声分量,使得对探测器的限制只剩下光阴极电流中的统计变化。因此,在天文学、光谱学、激光测距和闪烁计数等方面,光电倍增管得到广泛应用。
以上内容由北京和力达科技有限公司为您提供,希望对同行业的朋友有所帮助!
版权所有©2025 产品网