ICP-MS分析流程的建立
对于一种新基体的样品来说,常规的分析路径如下:
1. 酸化或溶解样品
样品一般需要***行酸化溶解使目标元素溶解在液体中.
2. 选择目标分析物和目标同位素
根据浓度范围来选择分析物和同位素。
3. ***行扫描以便识别出存在的干扰
可以***行半定量扫描,电感耦合等离子体质谱仪价格,可以通过半定量扫描判断大致存在哪些元素以及各个元素 的大致浓度范围。
4. 选择数据的采集模式以及校正曲线的类型
一般如果使用连续流的数据采集模式,会使用外标定量法。也有其他的数据评估方
法可以使用。
5. 选择合适的内标元素
内标元素的使用可以校正由于时间或基体***效应引起的信号漂移。
6. 能进行基体匹配
将标样的基体匹配到和您的样品基体完全一致,可以将两者之间的差异减小到小, 并且有助于得到更为准确的结果数据。
7. 进行质量控制校正(QC check)
在分析过程中插入另一来源的标样(2nd Source Standard)或者有证标准物质 (Certified Reference Material),电感耦合等离子体质谱仪,确保数据的完整性。
电感耦合等离子体质谱法测定地质样品中的铷
铷属稀散元素,在、航空航天、生物工程技术、***、能源和环境科学等领域有广泛的应用[1]。铷量的检测可为地质找矿、选矿冶金、材料加工等行业的生产研究以及***中***的诊断提供重要依据。目前,国内外分 析测试铷的方法主要有原子吸收光谱法'、原子发射光谱法'、X-荧光光谱法叵和中子活化法等,分析对象
涉及环境水样和生物样品,对地质矿样中铷的分析尚鲜见报道。上述方法中除中子活化法外,其他方法的检出限 均较高。现普及的原子吸收和发射光谱法分析铷时,须另加入镧盐,即便如此,对某些岩石、土壤样品仍得出较
实际值偏高的结果。中子活化法检出限虽低,但因仪器十分昂贵且性防护要求极高,使其难以普及。有关熔 融法-电感耦合等离子体质谱分析测试铷[9]的研究已有报道,但熔融法引入了大量盐类,不利于电感耦合等离子 体质谱仪的测定,且大大影响了分析方法的检出限。本文提出的酸溶-电感耦合等离子体质谱分析测试铷的方法, 具有准确度和精密度高,检出限低,干扰少,分析流程简单快速等特点。
质谱干扰对铷测定的影响
除了基体效应等非质谱干扰外,质谱干扰也是ICP-MS分析常遇到的问题。在ICP-MS分析中,即便极微量的 同量异位素的存在,也会干扰检测结果。
铷有85Rb和87Rb两种同位素,85Rb没有同量异位素,但87Rb有同量异位素87Sr。事实上,地质样品中常含锶元素。
由于干扰元素锶的两个天然同位素87Sr和88Sr的丰度分别为已知7.02%和82.56%,且88Sr不存在同量异位素 的干扰,所以通过测量88Sr 离子流的强度进而求出87Sr 的离子流强度,然后再从所测得的87处的总离子流强度 中将87Sr 的离子流强度减去,即得87Rb 净离子流强度。从而得出87Rb的校正公式为净离子流87Rb=离子流(87Rb 87Sr) -(离子流 88Srx 7.02/82.56 )。
PLA***AMS 300 的进样系统包括了蠕动泵(Peristaltic Pump)、(Nebulizer)。每个部件都关
系到能否都将样品以恒定准确的速率传递到离子源(Pla***a)处。这些部件在不同设置、 不同条件下,都会影响到灵敏度、背景、稳定性、以及由气体引入的干扰物。
蠕动泵(Peristaltic Pump):
泵管??? (Pump Windings) – 噪音的来源 样品提升速率 – 影响氧化物水平以及的稳定性
样品冲洗 – 需要时候用正确的泵管(winding)和冲洗时间(rinse time)
使用磨损过度的泵管或者泵管夹的压力不正确,都会导致噪音的产生,进而影响检测信号 的稳定性。因此,应该保证泵管的位置和压力都在正常条件下,并且不使用的时候,需要
松开张紧轮(tensioners)或泵管夹(platens),并且将泵管的一端卡子从卡槽卸下,电感耦合等离子体质谱仪厂家,让泵管
放松。
样品以什么速率被传输到非常重要。不同由于制造参数不同,其对应的 性能流速也是不一样的。如果泵速过高,电感耦合等离子体质谱仪多少钱,会影响信号稳定性,并且会导致氧化物(Oxides, 基于气体产生的干扰)产率升高。
版权所有©2025 产品网