OmniPL-MicroS组合式显微光致发光光谱系统
显微光路通常具有较高的通光效率,用在荧光光谱测量中,不仅可以进一步提升系统的信噪比,更可以实现微区测量。我公司除了可以提供“Flex One(微光)”系列显微光致发光光谱仪一体机,还为组合式系统的客户提供了两种类型的显微光路模块,一种是不带显微镜的水平光路显微模块,另一种是带有显微镜的垂直光路显微模块,它们都可以与我公司的光谱及配件组合成为显微光致发光光谱系统。***artFluo系列稳态荧光光谱仪光谱分辨率与激发光强控制***artFluo-QY的激发和荧光分光器各采用一套300mm焦长的高分辨率单色仪光路,激发光源可通过自动光阑灵活调整5%-100%的光通量,激发波长*小带宽可达到0。
MiniPL小型深紫外宽带隙光谱发光光谱仪
主要规格特点:
■ 采用5.5(224nm)或5.0 eV深紫外激光器
■ 室温PL光谱测量范围:190~650nm(标准),190~850nm(选配)
■ 高分辨率:0.2nm(@1200g/mm光栅,标配),
0.07nm(@3600g/mm光栅,选配)
■ 门闸积分平均器(Boxcar)进行微弱脉冲信号的检测
■ 基于LabView的界面控制
■ 光谱分析软件可获得光谱带宽、峰值波长、峰值副瓣鉴别、光谱数据运算、归化等
■ *大可测量50mm直径样品,样品可实现XYZ三维手动调整(标准)
■ 可选配自动样品扫描装置,实现Mapping功能
■ 可用于紫外拉曼光谱测量(需选配高刻线光栅)
■ 高度集成化,体积:15 ×18 × 36cm,重量:lt;8kg
瞬态荧光amp;时间分辨荧光光谱实现方案
1 瞬态荧光:
有别于稳态荧光,瞬态荧光主要通过脉冲光源、快速探测器获取样品由激发态回迁到稳态的弛豫时间,通俗的说就是样品的寿命。但在光路上基本与稳态荧光是一致的。
根据样品本身的不同特性其寿命分布可以从飞秒,皮秒,纳秒,甚至到微秒量级。同时,针对不同的样品寿命,测试方法也会随之改变, 相对应的测试方法有荧光上转换(Up-conversion),时间相关单光子计数(Time-Correlated Single Photon Counting),多通道扫描(Multiple Channel Scan)等。尽量满足在一个激发周期内,样品产生且只产生一个光子的有效荧光信号,避免光子对的出现。
2 瞬态荧光的获取方法:
荧光上转换(Up-conversion)
测试范围由fS-nS,光路核心部件光延迟线, 提供fs 量级的时间延迟,为系统测试提供时间精度保障。经过延迟线延迟的fs 脉冲与经过倍频fs 激光激发样品后产生的荧光进入混频器,产生波长大于样品荧光的的混频光。
样品的荧光寿命衰减曲线的时间轴由光延迟光路保证(分辨率和扫描宽度),而荧光强度由混频器后面的数据采集系统提供。这样的设计,将传统意义对快速探测器、高速电路的在时间响应和分辨率上的要求转而由相对容易实现光路延迟来完成(1ns 光程=0.3m,1ps 光程=0.3mm), 而百微米的机械移动实现起来相对容易很多;以下两种样品分别为标样蒽,和一个客户的激光晶体样品,可以看出时间分辨光谱的意义。从而轻松达到ps,甚至十几fs 的时间分辨率。
时间相关单光子计数(Time-Correlated Single Photon Counting)
时间相关单光子计数(TCSPC)实现了从百pS-nS-uS 的瞬态测试,相对于荧光上转换的测试方法,TCSPC 对数据的获取完全依赖快速探测器和高速电路。其实验构想非常便于理解:用统计的方法计算样品受激后发出的一个(也是一个)光子与激发光之间的时间差,也就是上图的Tstart(激发时刻)与Tstop(发光时刻)的时间差。 由于对于Stop 信号的要求,所以TCSPC 一般需要高重复频率的光源作为激发源,其重复至少要在KHz 以上,多数的光源都会达到MHz 量级;同时,在一般情况下还要对Stop 信号做数量上的控制;样品的荧光寿命衰减曲线的时间轴由光延迟光路保证(分辨率和扫描宽度),而荧光强度由混频器后面的数据采集系统提供。尽量满足在一个激发周期内,样品产生且只产生一个光子的有效荧光信号,避免光子对的出现。多通道扫描(Multiple Channel Scan)
多通道(MCS)扫描主要测试由nS,uS,mS甚至延伸至S量级的测试方法。在测试, MCS 设备同时打开多个时间通道,在理论上存在Single Shot 即获得一条衰减曲线的可能;但是如果物质的三重态量子产率比较高,那么它被激发后系间窜越的几率很大,荧光激发谱的形状会受到影响,导致与紫外吸收光谱的形状不完全一致。这也是有别于TCSPC 需要大量重复从能得到衰减曲线的重要特征。相对于TCSPC,MCS 对光源的重复频率几乎没有特殊的要求,只要满足样品寿命的采集周期即可。
一般多使用低重频脉冲光源激发样品,依据激发源的强弱、样品本身的效率, 以及探测器的工作模式,基本可以得到两种种不同的同步输出- 连续和光子计数模式。随之采用不同的数据采集设备,对应连续模式输出的探测器,多用如示波器, 门宽积分器(BOXCAR);OmniPL-MicroS组合式显微光致发光光谱系统显微光路通常具有较高的通光效率,用在荧光光谱测量中,不仅可以进一步提升系统的信噪比,更可以实现微区测量。而对于光子计数模式输出的探测器则使用带门宽控制的光子计数器。
TCSPC 和MCS 都是针对特定的发射波长得到的荧光动力学衰减曲线,后续的数据处理主要是寿命拟合,得到样品在某个发射波长下的寿命。
相对于大多数的样品,其在不同发射波长下的寿命是相同,只是荧光的发光强弱有区别;计算公式为:对于卓立汉光公司的荧光光谱仪相关产品的信噪比评价标准,采用的是一种算法。从另一个方面解释,可以认为这种样品稳态光谱的形貌与瞬态光谱的形貌是一致的。瞬态光谱,一般是指某个时刻的荧光光谱,N 多条不同时段的瞬态光谱顺序排列就组合成了时间分辨的光谱。
但确实有一些样品其瞬态光谱的形貌是有别于稳态光谱的,这里面主要原因就是样品有某种可以相互传递能量的物质存在。以下两种样品分别为标样蒽,和一个客户的激光晶体样品,可以看出时间分辨光谱的意义。 TCSPC 和MCS 都是针对特定的发射波长得到的荧光动力学衰减曲线,后续的数据处理主要是寿命拟合,得到样品在某个发射波长下的寿命。●OmniFluo“卓谱”系列——PL扩展型PL扩展型OmniFluo“卓谱”系统,PL/PLE的整合测量,有效解决了氙灯光源在某些实验中的激发光能量不足的问题。
相对于大多数的样品,其在不同发射波长下的寿命是相同,只是荧光的发光强弱有区别;MiniPL可被用表征半导体材料掺杂水平分析、合成组分分析、带隙分析等,不仅可用于科研领用,更可用在半导体LED产业中的品质检测。从另一个方面解释,可以认为这种样品稳态光谱的形貌与瞬态光谱的形貌是一致的。瞬态光谱,一般是指某个时刻的荧光光谱,N 多条不同时段的瞬态光谱顺序排列就组合成了时间分辨的光谱。
但确实有一些样品其瞬态光谱的形貌是有别于稳态光谱的,这里面主要原因就是样品有某种可以相互传递能量的物质存在。以下两种样品分别为标样蒽,和一个客户的激光晶体样品,可以看出时间分辨光谱的意义。
蒽的 稳态光谱
蒽的 时间分辨的光谱
虽然时间分辨中的每条瞬态光谱的波长分辨率只有10nm,但在380nm,400nm,420nm,450nm 几处特征峰还是能清楚的说明了,荧光随着时间在同时淬灭,稳态与瞬态光谱的基本形貌,相对强度对比没有本质变化。
激光晶体稳态发射光谱
各波长的衰减曲线
时间分辨的光谱
这是一个很好的例子,可以看到几个特征峰470nm,540nm,600nm 在稳态光谱与瞬态光谱中的形貌是不同的,而且在时间分辨光谱中相对强度随着时间的变化而变化;相应的在衰减曲线的前端,可以看到一段非衰减曲线的存在,说明样品的不同物质之间存在着某种能量传递。这是瞬态光谱有别于稳态光谱存在的重要意义。这是因为第二种方法在算法中对于噪声的取值,仅仅只考虑了光电探测器本身的噪声和电路系统的噪声,却没有考虑实际使用时的系统的整体光学性能带来的噪声影响。
3 时间分辨荧光光谱:
前面所有数据都是来自有动力学衰减曲线。如果用这样的方法,在实际测试中为了得到时间分辨的光谱,都会以时间为代价。
那么有没有直接可以获得时间分辨光谱的设备呢?
答案是肯定的,那就是ICCD,条纹相机等设备。但必须说明,ICCD 和条纹相机的局限在于,它们获得了光谱,但要拟合某个特征波长的寿命,需要类似时间切份的反向数据处理。
以下简要介绍ICCD(Intensified CCD)
简单说就是在CCD 前面加了增强器,这个增强器不但可以倍增信号,更重要的是可以做门宽控制,可以只让一段很短的光信号入射到CCD 面上,从而获得相对于触发时刻的某一段时间的光谱。同时,门宽信号在同步扫描过样品发光的过程中,得到了不同时刻的瞬态光谱, 顺序排列后就是时间分辨的光谱。由于对于Stop信号的要求,所以TCSPC一般需要高重复频率的光源作为激发源,其重复至少要在KHz以上,多数的光源都会达到MHz量级。ICCD 获取TRES 的速度要远远快于TCSPC 的采集速度,但其时间分辨率没有前者好。
版权所有©2025 产品网