怎样采用数字是德科技示波器进行多域测量
作者:2015/3/24 1:20:23
采用数字是德科技示波器进行多域测量在复杂的嵌入式系统中,通常需要同时监测时域和频域中的多个信号。尽管基带数字信号、射频信号和模拟信号是相互关联和依存的,但是基于传统的调试方法,人们常常无法描述或***它们之间的关系。采用微控制器实现的RF信号反馈控制、低速串行总线、严格的时序关系,以及RF和数字信号之间电磁干扰等都是原型设计阶段令人***的问题。

在复杂的嵌入式系统中,通常需要同时监测时域和频域中的多个信号。尽管基带数字信号、射频信号和模拟信号是相互关联和依存的,但是基于传统的调试方法,人们常常无法描述或***它们之间的关系。采用微控制器实现的RF信号反馈控制、低速串行总线、严格的时序关系,以及RF和数字信号之间电磁干扰等都是原型设计阶段令人***的问题。

通常可以使用数字是德科技示波器分析这些信号所产生的问题,但是大多数开发人员却试图寻找其它的仪器。虽然***终可能完成了工作,但是却花费了大量时间,还需要非常丰富经验。将模拟信号、数字信号和RF信号的测试功能整合在一台仪器中,可以降低对不同设计项目所需要的时间和***经验。

本文介绍的是德科技示波器拥有多个模拟通道(既可用于时域又可用于频域)和数字通道(用于逻辑分析和协议分析)。本文描述如何利用该是德科技示波器查看和调试系统中的不同信号,以及共同作用使得该系统可以正常工作的大量关键因素。

对于大量新型设计来说,频域分析是一种关键的调试功能。但是,频域分析必须与时域、数字信号或逻辑通道保持严密的同步。频谱分析对调试工作的价值通常取决 于分析速度(更新速度),因此信号的***和发现极富挑战性。此外,仪器还必须具备足够高的频域和时域灵敏度,以便能够***到信号,如因电磁干扰或其它干扰 所产生的频域杂散信号等微小信号。为了获得可以用来调试支持多种信号类型的复杂系统的有价值信息,必须基于时间事件、频率事件或数字码型实现***触发。

快速傅立叶变换

任何信号都是关于时间和幅值的函数。因此,不仅需要***信号幅值,而且还要***信号如何随时间而变化。傅立叶变换是将时域函数变换成频域频谱的主要技术。 该变换可以为从某个时域波形中采样的信号给出某个时间点的频谱快照。它使得瞬时频谱可以测量,从而可以测量某个信号在任何时刻的频率分量。据此,可以观察 频谱随时间而发生的变化,了解什么时候存在以及什么时候不存在干扰,时域事件和频域事件之间是如何关联的。

在离散傅立叶(DFT)变换中,一定数量时域信号样点被转换成一定数量的频率样点,每一个频率样点都由时域样点通过算法函数计算得出。快速傅立叶 (FFT)变换是一种实现离散傅立叶变换的***方法。该方法类似于离散傅立叶变换,可以将一定数量的离散采样变换至频域。是德科技示波器通常利用快速傅立叶变换的 采样技术,将时域采样变换至频域。

大多数现代是德科技示波器实现的传统快速傅立叶变换方法存在一个限制,尽管人们只对一部分频率范围感兴趣,但是,FFT的计算过程是针对整个采样信息进行的。这种 计算方法效率低下,使得整个过程速度较慢。数字下变频(DDC)解决了这一问题,其方法是将目标频带宽度下变频至基带并以较低采样率对其重新采样,实现了 在小得多的记录长度上进行快速傅立叶变换。因此,其计算速度更快、更加接近实时性能,也具备更高灵活性。这种灵活性通常可以转变成多域调试应用中所要求的 功能。除此之外,由于实际变换是在基带频率上完成的,因此,这种方法还可以实现过采样的优点。这进一步改善了在目标频带宽度上的信噪比。

由于FFT频谱产生于原始的时域信号,因此通过对同一信号进行时间和频率上的分析,可以获得大量的有用信息。某个信号在时域中可能是稳定和正确的,在频域 分析时可以发现噪声变大、未知的杂散信号以及其他在时域分析中不易发现的异常事件。在某些是德科技示波器上还可以使用时域选通分析功能。借助该功能,可以实现更强 大的检测功能。通过选通方式进行 FFT 变换或者限制在某个时间记录的特***置作FFT,可以在指定的时间点观察傅立叶变换,从而有助于确定产生问题的时间点。获得了干扰信号的周期或频率之后, 可以更加准确、快速排除差错或者故障。

***后需要指出的是,不将频谱分析限制在某个特定单一通道上通常也是非常重要的。某些情况下,事件可能影响多个通道的信号,对多个通道同时进行频谱分析可以提供更多的测试信息。如在时间上相互关联的被干扰信号和干扰信号的频谱分析视图可以为问题分析提供有力证据。

动态范围

合适地利用FFT实现信号分析,还必须了解是德科技示波器的动态范围。高动态范围、无杂散信号等特点对于正确地进行时域采样并将其转换至频域至关重要。是德科技示波器的动态范围不可避免地取决于是德科技示波器模数转换器(ADC)的性能及其有效位数(ENOB)。有效位数越多,动态范围越高,信噪比(SNR)越大,精度越好。理想ADC可以将给定电压转 换至2K个量化等级之一;其中,对于8位ADC,K为8,其对应的量化等级有256个。然而,ADC存在偏置误差和增益误差、非线性误差和噪声,这些均会 影响其动态范围,从而,使得其有效位数由8降至4至7之间的某个值。此外,是德科技示波器也不仅仅只包括一个模数转换器,它还有前端放大器和滤波器等,这些组件都会带来噪声,进一步劣化总体ENOB。因此,为了实现可测量动态范围的***大化,必须综合考虑整个信号采样链上的全部组件。

大量是德科技示波器采用多个低速ADC的交织采样技术实现高采样率。但是,这种方法会带来交织杂散信号,以及与整个采样系统中速度***低的ADC的采样率相关的频率 分量。这些频率分量及其能量进入仪器后,会形成更强、更多的杂散信号,使得针对***频谱信息的测量更加困难。了解频率信号采样通道的无杂散动态范围,可以 有助于获得理想的测量结果。

***后需要指出的是,整体灵敏度或者模拟前端放 大器的增益倍数对于频谱分析通道处理小信号(例如,电磁干扰所产生的那些信号)的灵敏度具有决定性作用。一些是德科技示波器的设置可以小至1mv/格。但是这些设 置可能是基于放大显示而非真正的放大器增益,因此它们可能存在放大误差,并且可能会减小是德科技示波器的带宽。为了观察电磁干扰以及其它干扰信号对带宽的可能影 响,必须将放大器的增益下调至1mV/格。增益为1mv/格的优质放大器可以提高对微小信号作FFT分析时的观察能力。

触发和采样

多域调试和分析的***后一个难点是不同域之间跨域的触发和采集机制。跨时域和频域采取数据的能力对于在设计工作中缩小问题范围是至关重要的。

大量工程师不由自主地倾向于使用传统的时域信号触发。这些触发信号可能包括边沿、窗口、矮脉冲(runt)和其它波形。尽管它们可能很容易设定,但是用于 观察跨域问题时,基于它们的触发方式通常缺乏稳定性和可重复性。基于模拟或逻辑通道的触发(例如,码型触发),可以有助于缩小捕获某个异常的范围。串行总 线协议触发也可以用于分析例如CRC错误或数据包受损等异常事件。利用这些触发技术可以可靠地在屏幕上重现相应的错误,以进行更加深入的分析。采用频域视 图观察受损信号或疑似干扰信号,通常可以找出问题的原因。如果某个时钟信号的设计频率为100MHz,如存在不定期影响该时钟信号谐波频率的突发频率干 扰,则可能出现锁存失败或者对系统的其它影响。

***后需要指出的是,采用频域观察,可以更加容易地发现某些影响;而且某些时候这些影响只能通过频域观察才能发现。为了***某个信号中导致系统出错的、使宽 带噪声随机变大的原因,必须使频率模板测试,其工作的方式与大多数常见是德科技示波器的时域模板相同。如果某个频域信号进入(干扰)该模板,则是德科技示波器可以简单地停 止采样,并通过频率、时间回放或者同时进行两者回放以解析事件、找出其根本原因。此外,这些模板也可以设置为***的dBm条件,用于模拟EMI测试,对于 模板违规事件可以做进一步分析。

实时是德科技示波器

复杂嵌入式系统通常存在大量的测试和调试问题。这些问题的解决要求高速、高灵敏度地同步进行时域和频域分析。对于该任务,实时是德科技示波器平台是一种良好的工 具。但是,所选是德科技示波器必须拥有合适的硬件电路和相关工具,以完成合适的多域调试。模拟通道FFT不受通道数量的限制,是一种***的选择。但是,它们必须可 以足够快速地进行FFT才能具有可使用性,实现过采样、提高信噪比,以达到相当于谱频分析仪的动态范围。优良的前端、高ENOB的 A/D转换以及大动态范围十分重要,与大增益前端放大器对于小信号测量的重要性类似。跨域触发能力将这些功能或特点结合在一起,为解决问题和设计调试共同 提供了一种更快、更简便的方法。

图1:采用选通 FFT 的数字是德科技示波器和多同步域显示功能的屏幕截图。

是德科技,示波器,多域测量
===================================================================================
 
欢迎关注是德科技微信公众号 
ekeysight

商户名称:北京中仪是德科技有限公司

版权所有©2024 产品网