冠熙风机 热风炉鼓风机 车间除尘鼓风机厂 小型除尘鼓风机厂
在总结以往研究经验的基础上,以鼓风机为研究对象,利用NUMECA软件对不同的叶片开槽方案进行了模拟,比较了不同方案下的风机性能优化,并结合分布确定了叶片开槽的较佳参数。叶轮内部流场。本文对鼓风机原叶轮开槽前的内部流场进行了数值模拟。结果表明,风扇叶片通道的吸力面发生了边界层分离,形成了一个较大的涡流区。后半段通道内,吸力面边界层分离较为严重,高速气流占整个通道宽度的65%左右。因此,可以通过在容易发生边界层分离的叶片端部开一个小间隙来防止边界层分离的产生和发展,从而使流经该间隙的部分流体能够吹走吸入面出口附近的流体。以往的研究表明,狭缝的大小对气流有很大的影响,但在粉尘环境中,狭缝过小(狭缝宽度约为2mm)可能会被堵塞而失去其功能,这限制了该技术在实际中的应用。因此,为了确保鼓风机不发生堵塞,开口处有足够的间隙。考虑到工程实践中操作的方便性,用A的变化来表示缝的位置,用B的变化来控制缝角的大小。比较采用A/C(c为叶片弦长)与B/C的无量纲形式。在计算和优化槽位和槽角时,采用了固定一个比例和调整另一个比例的方法。实际上,鼓风机相同部件的各类丢失中,甚至不同部件的丢失之间都是彼此相关,彼此影响的。经过考虑各部件丢失之间的相关联系,并以很多的实验资料和现代计算方法为基础,得到了具有理论根据和实际使用价值的风机及丢失模型。为了保证离心风机工作的可靠性,风机的前盖与集流器之间和蜗壳与转轴之间,都要保持必定的空隙。这些空隙都将引起风机的走漏丢失,走漏丢失一般包含外走漏与内走漏两种。一般情况下,称蜗壳与转轴之间的走漏为外走漏,但由于外走漏的值比较小,一般忽略不计。气体流经鼓风机叶轮前盘与集流器之间的走漏形成循环活动,白白消耗掉叶轮的能量。这种丢失称为内走漏丢失。选用数值计算方法对离心风机的走漏丢失特性进行了研究,经过选用A型和B型防涡圈,不仅降低了旋涡的选装强度,还有用的降低了风机的走漏丢失。并且在两种防涡圈中,B型的防涡圈节能作用更好。轮盘冲突丢失鼓风机叶轮旋转时,叶轮的前盘和后盘外外表与其周围的气体发生冲突。因而发生的丢失,称为轮盘冲突丢失。这种内部运动引起的能量丢失,尽管具有流力丢失的特色,可是这种丢失只造成功率的损耗,并不会降低风机的压力,所以叫做轮盘丢失或许内部机械损失。鼓风机叶轮由若干结构参数组成,这些参数对离心风机的性能有着重要的影响。相似原理在风机上的应用,极大地促进了风机的设计和改进。在风机设计中,根据相似原理,可以选择现有的***风机或经过试验的机型进行相似设计,以保证风机达到预期效果。在没有合适、***的风机或模型的情况下,可以根据鼓风机相似原理制作模型,然后将模型试验的结果转换为机器的实际结果,完成风机的设计。然而,相似原理的应用必须严格满足几何相似、运动相似和动态相似等相似条件。可以看出,在相同的条件下,通过风机转速与叶轮出口直径的比值,可以得到风机流量、静压、总压和内功率的比例关系。然而,当只改变叶轮结构参数时,改进后的风机与原型风机的相似性将不能得到满足。因此,本文通过改变鼓风机叶轮的结构参数和数值计算方法,对改进后的风机性能进行了评价和分析。离心风机结构参数试验模型为2900转/分斜槽离心风机,传动方式为A型传动。斜槽离心风机主要由叶轮、蜗壳和集热器组成。叶轮由前、后、叶片三部分组成。前盘为锥形弧。叶轮直径480mm,叶片数20片。短刃10片,长刃10片,分布均匀。短叶片为截短半径的前叶片,其余部分与长叶片结构相同,所有叶片出口安装角度为140度。叶轮图如图3.1所示。蜗壳为矩形截面,宽度为69mm。)
山东冠熙环保设备有限公司
姓名: 李海伟 先生
手机: 15684302892
业务 QQ: 3089959253
公司地址: 山东省临朐县223省道与南环路交叉口往南2公里路西
电话: 0536-3690068
传真: 0536-3690068