
干燥设备风机-风机-冠熙多年专注风机设备(查看)
穿孔模型的风机叶片穿孔主要包括孔径、孔位分布、孔倾角等参数。当穿孔孔径过大时,风机叶片工作面内的气流流向非工作面,风机,大大降低了风机的静特性。当孔径过小时,通过孔的气流不足以***涡流。本文将孔径设置为准3毫米。合理的穿孔位置能有效地***涡流的产生。第1排孔位于叶片前缘前方,干燥设备风机,使分离点沿流动方向向后移动;叶片中部不穿孔,以保证叶片能提供足够的升力;叶片后缘设有三排孔,以***分离的产生。区带。采用数值计算方法研究的对旋轴流风机几何参数为:叶轮直径约800mm,额定转速2900r/s,两级叶轮叶片数分别为14和10。数值模拟采用Fluent软件进行。在模拟之前,网格被划分。计算区域包括入口区域、管道区域、风机的旋转叶轮区域和出口区域。整个网格划分为三个步骤:稳态、非稳态模拟和噪声模拟。将RNGK-E模型用于稳态模拟,是对标准K-E模型的改进。旋转流场的计算更准确,更适合于边界层流动。采用简单算法实现了速度与压力的耦合。边界条件为速度入口和自由出口,实体壁不滑动,采用多旋转坐标系MRF实现了动、静界面之间的数据传输。风机利用模拟方法分析了第1级导叶结构形式对某两级动叶可调轴流风机性能的影响,表明长短复合导叶对提升轴流风机气动性能方面好于单一长度叶片式导叶。风机在流固耦合模拟研究方面,利用CFX和Ansys对离心风机叶轮的模拟表明,风机气动性能基本不变,而较大变形量减少2.5%,较大等效应力增大3.6%。失速工况下叶轮的静力特性,指出气动力载荷对叶轮的总变形量有显著的影响,对叶轮等效应力分布的影响较小,风机旋转工作时的应力及总应变,干燥机风机,验证了在流固耦合作用下风机工作的强度要求。Dhopade模拟了低周疲劳与高周疲劳联合作用对燃气轮机叶片结构与气动性能的影响。在考虑叶片和流域相互耦合状态下,对大型轴流风机叶片的气动弹性的模拟表明,烘干供风机,考虑气动弹性的较大应力几乎是不考虑气动弹性的较大应力的两倍,由此证明在叶片安全性评估方面考虑气动弹性的必要性。综上所述,目前对于轴流风机的导叶数目改变研究只关注其气动性能,而对于叶轮静力结构和振动情况研究较少。因此,本文研究对象为某电厂660MW机组配套的动叶可调轴流一次风机,借助Fluent软件对其内部流场进行数值模拟,并借助Workbench流固耦合模块对叶片进行静力分析和预应力下的模态分析,对导叶数目改变前后的叶轮安全性进行评估,为风机生产和改造提供参考依据。由项目实际考察情况得到,风机所在位置距敏感建筑仅15m,风机进风口正对敏感建筑。针对该项目上风机的噪声进行现状模拟,利用CadnaA噪声模拟软件对风机噪声对周围敏感点的影响进行分析,风机所在建筑与敏感建筑之间的噪声值较大,敏感建筑靠近风机进风口一侧的噪声超过70dB(A),噪声较大区域正对风机进风口,噪声值为76.3dB(A)。由于建筑物的遮挡作用,噪声能量被削减,使得噪声无法直接达到的区域的噪声值降低。常用的风机噪声治理方法有加装隔声罩,对风机室墙壁进行吸隔声处理,风机室隔声门,进排气筒加消声器等从整体上对风机进行吸声、隔声、消声等综合治理措施。根据项目实地考察情况,受大风量轴流风机安装位置限制,无法对风机房墙体进行常规的吸隔声处理,考虑风机产生的空气动力性噪声主要从进风口传出,且风机进风口正对敏感建筑,故本项目采用在进风口安装进风消声器的方式对风机进行降噪。风机消声器设计针对空气动力性噪声,主要应用的消声器包括阻性消声器、抗性消声器、阻抗复合型消声器[7]。在该项目应用中综合考虑现场情况,决定采用阻性消声器和消声弯头组合形成的一种结构形式,这种消声器结构简单,通过控制消声器内吸声材料的结构参数,可以有效的控制消声器的消声性能。吸声材料按照吸声原理可以分为多孔性吸声材料和共振吸声材料。该消声器中设计采用多孔性吸声材料。干燥设备风机-风机-冠熙多年专注风机设备(查看)由山东冠熙环保设备有限公司提供。干燥设备风机-风机-冠熙多年专注风机设备(查看)是山东冠熙环保设备有限公司()今年全新升级推出的,以上图片仅供参考,请您拨打本页面或图片上的联系电话,索取联系人:李海伟。)