供应LNG液化***-荣盛达(无锡)能源(推荐商家)
***回收装置换热网络优化设计换热网络在实际的应用中主要是实现提高能源的利用效率,除此之外,它还能有效的降低生产过程中的能源消耗,从而也大大的降低了生产过程中的资金投入,在***回收装置热网络优化设计的过程中,夹点分析法是一个经常使用的方法,这一方法在很多方面都能体现出明显的优势。***是一个加工行业经常要使用到的一个资源类型,其消耗量也是非常大的,所以需要使用***回收装置对换热网络进行优化设计。1工艺流程简介***回收装置的工艺流程1.1原料气压缩预冷阶段原料气在经过压缩之后,使其压缩离要能够达到38.5kg/cm2,之后将原料气放入到E3、E2进行换热,当换热使其温度能够降低到零下45摄氏度的时候停止。其中E3所使用的冷却器内使用的是氨水作为制冷剂,E2是多物流的高1效板翘式换热器。原料气会通过E2进行换热和冷却。1.2脱***塔工段冷却后的原料会呈现出气液混合的状态,其会进入到脱***塔里,塔顶的气体经过E5进行冷却,一部分会经过冷凝,并为回流服务,气体排出之后会进入到E5和E2当中,从而为原料气提供其所需要的冷量,脱***塔排出的气体在不断的膨胀,换热之后还要经过压缩机进行压缩,气体的压力要比界区的压力更高一些,这一原料气会经过E7被冷却到50℃,之后就会立即排到界区之外。脱***塔底部所使用的是***的再沸器,还要在这一过程中使用温度为236℃的贫氨水作为加热剂,使其温度能够一直保持在61℃,这样就可以充分的满足产品在乙1烷中的百分比的相关要求,***塔提馏短的侧限引出的液体会进到E2当中,这样也就使得液体的温度有所升高。1.3脱乙1烷塔工段脱***塔底物流流入脱乙1烷塔,气相上行从塔顶流出进入氨冷却器,部分冷凝提供回流,未被冷凝的乙1烷产品气体排出界区。脱乙1烷塔底部使用***的再沸器,并使用236℃的贫氨液热剂,使塔底温度保持110℃,以满足丙烷产品中对乙1烷含量的要求。1.4脱丙烷塔工段脱乙1烷塔底物流流入脱丙烷塔,LNG液化***供应商,气相上行从塔顶流出进入空气冷却器。全部冷凝液经接1收器后一部分回流,另一部分作为丙烷产品经水冷器冷却至38℃后进入储罐。脱丙烷塔底部使用***的再沸器,并使用236℃的贫氨液热剂,使塔底温度保持136℃,以满足丁烷产品中对丙烷含量的要求。1.5脱丁烷塔工段脱丙烷塔底物流和预处理残油混合流入脱丁烷塔,气相上行从塔顶流出进入空气冷却器,全部冷凝液经接1收器后一部分回流,另一部分作为丁烷产品经水冷器冷却至38℃后进入储罐。脱丁烷塔底部使用***的再沸器,并使用236℃的贫氨液热剂,使塔底温度保持130℃,以满足轻油产品中丁烷的含量要求。塔底轻油产品经空气冷却器冷却至50℃进入储罐。2换热网络用能分析2.1提取数据为了能够将加点分析顺利的进行下去,需要对工艺予以充分的了解,同时还要按照系统物料平衡和能量平衡的原则进行夹点分析,同时还要对分析过程中所使用的材料进行详细的分析还要提供这些材料的初始温度、目标温度等重要的参考数据,要按照夹点分析过程中的相关要求去提取物流,热物流和冷物流的提取数量应该是完全一致的,这样才能给分析提供更加准确的数据支持。经过初始温度和目标温度热焓的具体数值计算出该温度范畴之内的热熔流量率,结果显示大部分都是变小的趋势,而也有几个物流在目标温度范围内出现相变不断增大的现象,针对这样的情况,研究人员对其做了合理的分段处理,这样就可以更加准确的计算出该温度范围内的热容流率。2.2原换热网络换热网络网格图可以清晰、方便地表示和设计过程工业的换热网络。现过程(***回收装置)换热网络网格图如图2所示。换热网络使用了2个换热器、4个再沸器和8个冷却器。其中,E2、E5均为高1效多物料流板翅式换热器,它们分别对多股冷热物料流进行高1效换热;8个冷却器包含2个液氨冷却器(C1)、4个空气冷却器(C3)和2个水冷却器(C2)。经过对现有换热网络网格图的分析可知,冷却公用工程消耗能量9.454MW,加热公用工程消耗能量6.8736MW。当前换热网络中冷热物料流***1小传热温差为5K,即ΔTmin=5K。3换热网络翻新设计在对原有的换热网络和夹点进行详细分析的基础上,设计人员采用了不符合夹点分析三原则的设计方式,这样做的目的主要是为了能够有效的提高***的回收效率。在尽量减少对原设计改造的基础上,分别在夹点以上和夹点以下针对几个物料流进行了一定的改进,在改变设计方式之后,得到的***回收量有了很大的提升,所以这种新的设计方案是切实可行的。设计图如图3所示。改进后的方案使用干气产品和丙塔顶料的热量与甲塔底再沸料换热,节省了制冷和加热公用工程。与***1大能量回收方案相比,改进的设计方案减少了2个换热器,避免了物料的分流改造,LNG液化***,且克服了***1大能量回收方案中换热器冷端温差较小的弱点,大大提高了翻新设计的效果。液化***(LNG)如何输送1、液化***管道运输液化***作为液体产品进行长距离管道输送,其输送技术与原1油加热输送工艺类似,管道沿线需要建设液化***加压泵站和冷却站。进入管道的是饱和液化***液体,由于管道沿线温度的影响,液化***易受热,其中一部分会被气化,使管道内形成两相流动,这不仅增大了沿线阻力,而且还会产生气体段塞流动现象,严重影响管道的输送能力和安全运行。因此,供应LNG液化***,对于低温液体输送管道,特别是长距离管道,要防止液体气化,就必须实现液体单相流动。而防止液化***气化的方法需要采用密相输送工艺,即将管道的操作压力控制在临界冷凝压力之上,管道内流体温度控制在临界冷凝温度之下,使得管道运行工况位于液相密相区。此外,为降低因流动摩擦和过泵剪切引起的液化***温度升高,长距离液化***输送管道除建设加压站之外,还需要每隔一定距离设冷却站,并且使加压站和冷却站建在一起,即所谓的冷泵站,以便于施工和管理。随着低温材料和设备技术的发展,液化***长距离管道输送在技术上是可行的。2、液化***公路运输采用液化***形式供应***的过程称为液化***供应链。公路液化***供应链主要包括***液化、液化***储存和运输、液化***再气化等环节。液化***再气化的目的是将液化***重新转化为气态,以便终端用户使用,再气化过程在专用蒸发器中进行。***液化厂(站)根据液化的目的,***液化厂(站)通常分为基本负荷型和调峰型两种。基本负荷型液化厂的任务是将***以液态形式运输到消费地,其特点是全年连续运行且产量比较均衡。调峰型液化厂的任务是为***供气系统提供一种储气调峰方式。对于一些城市,由于民用气冬用多,夏用少,或者因用气的化工厂检修及液化***厂的技术改造,甚至是输气管网发生故障等,都会造成定期或不定期的供气不平衡,而建设调峰型液化厂就能起到削峰填谷的作用。在经济上,调峰型液化厂比地面高压储气罐和地下储气库建设更节省土地、资金,而且方便、灵活,不受地质条件限制。3、液化***海上运输的发展随着液化***海上运输技术的不断成熟,世界液化***的贸易量占世界***贸易量的比例呈逐年上升的趋势。液化***海上运输特点有:(1)高风险液化***的运输成本占液化***价格的10%~30%,原1油的运输成本只占10%。原因之一是液化***罐船需要低温绝热材料,建造费用昂贵。目前,运输能力为13.8×104m3的液化***运输船造价为1.5×108~1.6×108美元,比同样输送当量的油船造价高出4~5倍。另外,由于此类船舶的用途单一,经营上又缺乏灵活性,使液化***船舶的***风险比其他种类船舶更大,一般在进行***之前都要求掌握长期运输合同(一般在20年以上)。(2)运输稳定世界液化***运输大多为定向造船,包船运输,航线和港口比较固定,并要求较为准确的班期,非计划性停泊较少,运费收入比较稳定,一旦进入市场运费收入比较稳定,来自外界的竞争相对较小。(3)竞争有序由于世界液化***运输的即期市场没有出现,LNG液化***厂家***,因此其运费主要取决于气源地的***价格、运输距离以及船舶的营运成本等方面,一般不会出现市场竞争无序的情况。LNG汽化器选材研究(一)铜合金或者是铜用铜的材料制作的汽化器,可以具有在海水中耐腐蚀的特点。同时铜合金还具有抗污损的能力。现代科学研究中的一种观点认为:在海水的溶解下,铜会溶出一种***1的铜离子,这种铜离子导致铜具有抗污损的能力。而与此不同的另一种观点则认为,在铜浸泡海水的过程中,铜合金表面将会形成一种氧化膜,这种氧化膜使得铜具有抗污损的性能。但是本次研究对两种材料进行了海水浸泡试验,***终结果表明两种材料都有一定程度的污损状况出现。但事实上确实是铜合金表面的氧化膜和铜溶解后产生的铜离子以及材料表面产生的腐蚀产物的自身性质以及粘附的程度都会影响材料抗污损的能力。除此之外,随着材料暴露时间的不断增加,材料表面的腐蚀产物也将会增加,这就会导致材料抗污损的能力下降。因此在使用海水作为热源的同时,需要对海水进行处理,以减少腐蚀情况的出现。(二)钛现代科学研究中发现,钛具有较为优良的耐腐蚀能力。钛这种材料当处于海水中与其他材料相比,可以接受更高的水流速度,当处于静止海水中是,钛的抗腐蚀点也比不锈钢等材料更为合适,且抗缝隙腐蚀的能力也更好。从文献[1]中看出,钛是作为大型LNG汽化器中海水作为热源的***1佳材料选择。(三)防锈的铝材料铝材料可以在海水中作为一种传热的材料,因为铝及铝合金通常在海水中会出现局部腐蚀,而铝及其合金的点蚀状况通常是出现在材料不均匀的地方,这些不均匀的地方常常会先受到损坏。但是铝锰合金的抗腐蚀性就较好,当铝镁合金在4a时基本上不会出现局部腐蚀的情况。(四)双相的不锈钢LNG汽化器的结构中,难免会出现曲率的变化,而在这种变化处难免会出现残余应力及结构产生的应力,且在一些结构中出现的焊接点出也有残余应力及缺陷。就是这些残余应力及缺陷会使得处在海水中的设备会出现腐蚀。而双相不锈钢这种材料具有抗点蚀的特性,同时在查阅相关资料时得出,双相钢在天然的海水中会出现一定的缝隙腐蚀,而在流动及合成海水中出现的腐蚀程度较轻。而在天然海水中腐蚀情况的具体严重度与海里生物对双相钢的附着有一定的关系。)