![](http://img4.cpooo.com/files/201903/08/p/62/1171769_1552049574.png)
***音响设备_舞台音响设备_会议音响工程
***音响设备_舞台音响设备_会议音响工程,深圳市索想伟业科技有限公司厂家,WWW.DSP-PA.COM深圳市索想伟业科技有限公司始创于1988年,是一家集公共广播系统、智能无纸化会议系统、***音响设备_舞台音响设备_会议音响工程,电子教学系统和政务大厅协同办公系统的研发、生产和销售为一体的大型***级高新技术企业。企业是公共广播***标准G***526《公共广播系统工程技术规范》的主编单位,多次被评为“公共广播行业***具竞争力***名”“公共广播及会议系统十大***品牌”、“十佳广播会议DISHIPU品牌”、“中国智能建筑行业会议扩声系统***”、“智能建筑行业***民族品牌”、“***音响灯光10大国际品牌”“中国演艺设备行业20强企业”、“中国演艺设备行业优质产品”、“高新技术企业”、“十佳民族品牌”、“广东省重合同守***企业”“广州市***商标”,是北京奥运会、上海世博会、广州亚运会、深圳大运会、中国高铁、老挝亚欧首脑会议、中国博览会会展综合体等国内外重大工程项目和众多学校、商城、超市、酒店、机场、车站、公园景点、办公大楼、生活小区、***机构、工厂企业等的音频设备供应商***音响设备_舞台音响设备_会议音响工程输出功率功率放大器的输出功率值。输出功率对音质没有***影响,但有相当程度影响着声音的响度(音量)、对喇叭系统的控制力(即功放阻尼系数的高低)等。输出功率通常有RMS(RootMeanSquare)功率标法和PMPO(PeakMusicPowerOutput)功率标法两种。RMS是设备在不失真的前提下,可以长时间输出功率的***大平均值;PMPO是计算在不损坏设备的前提下瞬时输出功率峰值的标法,所以一般标称PMPO功率值的看上去都十分惊人。PMPO功率只能作为RMS功率的附注信息使用,早期日本系列品牌的组合音响常常使用这种标称法。失真度(Distortion)失真分为互调失真、相位失真、谐波失真等几种类型,以百分比标称。音响系统平常说的失真度是总谐波失真THD(TotalHarmonicDistortion),谐波失真有奇次和偶次失真。一般情况下,失真度应追求***低化,但也有例外的,比如电子管功放失真很大,但很多人觉得更好听,因为人耳对偶次失真不敏感,而奇次失真会让人烦躁。频率响应(frequencyresp***e)音响设备在一定的电平振幅内可以重放的频率范围,所对应的灵敏度数值就是频率响应。在额定的频响范围内,输出电压幅度的***大值与***小值之比,以分贝数(dB)来表示其不均匀度。如设备标称频率响应的数值为:20-20kHz(&plu***n;3dB)。20-20kHz就表示该设备能够发出20Hz-20kHz频段的信号,这段频率被称为频率范围,而&plu***n;3dB表示发出20Hz-20kHz信号时,信号强度的振幅在&plu***n;3dB内波动。数字功放简介数字功放采用早已存在的D类放大器电路,D类放大器的电路采用场效应管H-桥式链接。电路场效应输出的脉冲波经过***得到原来的正弦波,驱动扬声器产生声音。数字功放原理数字功放的功放管工作在开关状态,理论状态晶体管导通时内阻为零,两端没有电压,当然没有功率消耗;而截止时,内阻无穷大,电流又为零,也不消耗.所以作为控制元件的晶体管本身不消耗功率,电源的利用率就特别高.图1是数字D类功放的工作原理框图.D类功放处理的是经脉宽调制(PWM)的音频数字信号,声音信息埋藏在脉冲的占空比或脉冲密度中.图示是音频信号的一种PWM调制方法,***为直观;较多采用的是以脉冲密度来表示信号大小的,脉冲密度大的地方,表示电压高;稀的地方,电压就低.双向信号可用其它方式调制,如占空比50%,即脉冲宽度与间隔宽度1:1,表示信号幅值为零;占空比大于50%,幅度为正,这时数值越大,正幅度越高;占空比小于50%,幅度为负,越小越负.因为这种信号并不需要与外接设备直接相连,也就不需要格式完全统一,各厂可按自行研发的***佳方案调制.音频PWM编码可以从两种途径获得,一是对模拟音频信号进行模数变换直接生成PWM数字音频.二是对其它编码的数字音频,如CD的PCM编码,通过数字信号处理技术变换成PWM码.获得后用此信号去控制大电流的开关型功率MOSFET由功率管输出一个大能量的PWM码.输出电压的大小由电源电压高低决定,输出的电流由负载扬声器的阻抗和电路形式决定.功率管工作在开关状态,只要开关特性好,线性要求几乎没有,制造成本比音响对管低,工业控制上这类MOSFET已用得很普遍,取材方便.由于开关管导通时的饱和压降和截止时的漏电流也会损失一些电能,但总效率仍有百分之九十几,为各类放大电路效率之冠.开关晶体输出的是脉宽调制波形,要成为可听的模拟音频信号,还需经过一路带宽为20KHz的低通滤波器,滤去脉冲波形中的高频成分,见图3,一般说来功放的输出电压对选取电容的耐压不成问题,只是电感***大允许电流要设计正确.数字功放由于效率高,管子的耗损小,功放的散热结构可以做得非常小巧简单,整个电路可以做得很小.所以,首先在笔记本电脑、有源音箱和声卡上采用.带有数字功放的声卡可直接接通普通音箱,这样使用就方便得多.随着技术的发展,数字功放也进入音响领域,TACT公司2000年推出的一款数字功放TACTAudio"黄金时代",令发烧音响界改变发结数字功放的成见,国内成都天奥公司更早就推出了用于家庭影院的数字多声道功放,深圳的三诺公司也在研发数字功放的有源音箱.国外多家芯片公司已推出带各种功能的数字功放IC器件,为整机生产厂更新产品提供了便利条件.一场功放革命正在悄然兴起.从图1可以看出数字功放的另一优点是可以直接放大数字音频信号.CD和DVD***上输出的音频信号是数字化的,现在播放机***后要经过数模变换,变成模拟音频后再送出.而采用数字功放后,就可把***后的PCM数字音频信号直接进入数字信号处理电路处理成PWM码进行放大.省去了播放机中的数模变换和数字功放中的模数变换二个较贵重部分,不但音质受损少,成本也可降低.***音响设备_舞台音响设备_会议音响工程输出功率利用数字功放技术生产整机时,音量调节方案会成为机种档次的分界线.简单方案就像传统模拟功放那样由电位器衰减模拟信号的输入幅度,实现音量衰减.这种方式数字信号的量化比特率得不到充分利用,小音量时信噪比下降,动态范围变小.而且也不能用于数字音频直接输入系统.较好的方案是采用调节电源电压的方式来衰减音量,以改变加到低通滤波器上的脉冲电压幅度来改变输出功率.这样量化比特率仍可充分利用,由于电压下降,量化噪声也随之下降,所以音量减小,但信噪比和动态范围仍能保持不变.由于功放电源的功率较大,改变电源电压不能用电阻衰减或分压方式来实现,必须从电源整流稳压部分就开始.TACT公司采用的方法是在数字稳压电源的DC-DC逆变过程中,改变占空比来改变***终输出电压.这类方案目前还只能在分立元件做功率输出部分的整机中采用,集成化数字功放IC仍用衰减模拟输入为主来调节音量.***音响设备_舞台音响设备_会议音响工程输出功率从现状来看,数字功放已能商品运用在功率一般的普通用途放大器上性价比和小型、节电等方面都有长处.几瓦的小功率型集成功放芯片,控制电路和功率开关器件已一体化,使用非常方便.几十瓦以上的大功率用数字功放芯片,一般只集成控制电路部分,大功率开关器件需另外集成或自行配置,以便整机设计灵活.在HF领域中,数字功放还只能算是在探索,离商品化还有一段过程.但数字功放是功率放大后起之秀这点是不容置疑的.极低频从20Hz-40Hz这个八度我称为极低频。这个频段内的乐器很少,大概只有低音提琴、低音巴松管、土巴号、管风琴、钢琴等乐器能够达到那么低的音域。由于这段极低频并不是乐器的***美音域,因此作曲家们也很少将音符写得那么低。除非是流行音乐以电子合成器刻意安排,否则极低频对于音响迷而言实在用处不大。有些人误认一件事情,说虽然乐器的基音没有那么低,但是泛音可以低至基音以下。其实这是不正确的,因为乐器的基音就是该音***低的音,音只会以二倍、三倍、四倍、五倍„等的往上爬高,而不会有往下的音。这就像您将一根弦绷紧,弦的全长振动频率就是基音,二分之一、三分之一、四分之一、五分之一„等弦长的振动就是泛音。基音与泛音的相加就是乐器的音色。换句话说,小提琴与长笛即使基音(音高)相同,音色也会有不同的表现。低频从40Hz-80Hz这段频率称为低频。这个频段有什么乐器呢?大鼓、低音提琴、大提琴、低音巴松管、巴松管、低音伸缩号、低音单簧管、土巴号、法国号等。这个频段就是构成浑厚低频基础的大功臣。通常,一般人会将这个频段误以为是极低频,因为它听起来实在已经很低了。如果这个频段的量感太少,丰润澎湃的感觉一定没有;而且会导致中高频、高频的突出,使得声音失去平衡感,不耐久听。中低频从80Hz-160Hz之间,我称为中低频。这个频段是台湾音响迷******的一段,因为它是造成耳朵轰轰然的元凶。为什么这个频段特别容易有峰值呢?这与小房间的长、宽、高尺寸有关。大部份的人为了去除这段恼人的峰值,费尽心力吸收这个频段,使耳朵不致于轰轰然。可惜,当您耳朵听起来不致轰轰然时,下边的低频与上边的中频恐怕都已随着中低频的吸收而呈凹陷状态,而使得声音变瘦,缺乏丰润感。更不幸的是大部份的人只因峰值消失而认为这种情形是对的。这就是许多人家里声音不够丰润的原因之一。这个频段中的乐器包括了刚才低频段中所提及的乐器。对了,定音鼓与男低音也要加上去。中频从160Hz-1280Hz横跨三个八度(320Hz、640Hz、1280Hz)之间的频率我称为中频。这个频段几乎把所有乐器、人声都包含进去了,所以是***重要的频段。读者们对乐器音域的***大误解也发生在此处。例如小提琴的大半音域都在这个频段,但一般人却误以为它很高;不要以为女高音音域很高,一般而言,她的***高音域也才在中频的上限而已。从上面的描述中,您一定也了解这段中频在音响上是多么重要了。只要这段频率凹陷,声音的表现马上变瘦了。有时,这种瘦很容易被解释为「***凝聚」。我相信有非常多的音响迷都处于中频凹陷的情况而不自知。这个频段的重要性同时也可以从二音路喇叭的分频点来分析。一般二音路喇叭的分频点大多在2500Hz或3000Hz左右,也就是说,2500Hz以上由高音单体负责,2500Hz以下由中低音单体负责。这2500Hz约莫是1280Hz的二倍,也就是说,为了怕中低音单体在中频极限处生太大的分频点失真,设计师们统统把分频点提高到中频上限的二倍处,如此一来,******的中频就可以由中低音单体发出。如果这种说法无误,高音单体做什么用呢?如果您曾经将耳朵贴近高音单体,您就听到一片「嘶嘶」的声,那就是大部份泛音所在。如果没有高音单体发出嘶嘶的音,单用一个中低音单体来唱音乐,那必然是晦暗不堪的。当然,如果是三音路设计的喇叭,这段中频绝大部份会被包含在中音单体中。中高频从1280Hz-2560Hz称为中高频。这个频段有什么乐器呢?小提琴约有四分之一的较高音域在此,中提琴的上限、长笛、单簧管、双簧管的高音域、短笛的一半较低音域、钹、三角铁等。请注意,小喇叭并不在此频段域中。其实中高频很容易辨认,只要弦乐群的高音域及木管的高音域都是中高频。这个频段很多人都会误以为是高频,因此请您特别留意。高频从2560Hz-5120Hz这段频域,我称之为高频。这段频域对于乐器演奏而言,已经是很少有机会涉入了。因为除了小提琴的音域上限、钢琴、短笛高音域以外,其余乐器大多不会出现在这个频段中。从喇叭的分频点中,我们可以发现到这段频域全部都出现在高音单体中。如我前面所言,当您将耳朵靠近高音单体时,您所听到的不是乐器的声音,而是一片嘶嘶声。从高音单体的表现中,可以再度证明高音单体几乎很少发出乐器或人声的基音,它只是发出基音的高倍泛音而已。极高频从5120Hz-20000Hz这么宽的频段,我称之为极高频。各位可以从高频就已经很少有乐器出现的事实中,了解到极高频所容纳的尽是乐器与人声的泛音。一般乐器的泛音大多是愈高处能量愈小,换句话说,高音单体要制造得很敏锐,能够清楚的再生非常细微的音。从这里,发生了一件困扰喇叭单体制造的事情,那就是要如何两全其美?什么是「两全」?您有没有想过,假若一个高音单体为了清楚再生所有细微的泛音,不顾一切的设计成很小的电流就能推动振膜,那么同样由这个高音单体所负责的大能量高频与中频极可能就会时常处于失真的状态,因为这二个频段的能量要比极高频大太多了。这也是目前市面上许多喇叭极高频很清楚,却容易流于刺耳的原因之一。)