GPU硬件融合-T2000系列
《PD平面融合系列》适用于运行多媒体程序、Flas***、3D动画、影音、场景复杂程度较低的即时三维游戏。主要参数:构架:工控架构操作系统:GPU融合系统处理器:GPU核型类型:Lynnfield主频:2660MHz总线带宽:4.8GT/S核心类型:G92核心位宽:256bit核心频率:680MHz流处理单元:128个/片运行环境:任意曲面校正:支持温度:28摄氏度拼接方向:双向、头尾LOOP局域网控制:支持湿度:35%-80%融合方式:GPU纯硬件融合重启自动***:支持***大功率:1000W融合精度:1/16个像素支持的投影机类型:DLP、LCD电压:~220V色彩统一性:肉眼难以分辨***佳投影机物理分辨率:1024×768防震:否融合速度:两通道240帧/秒三、四通道117帧/秒五、六通道42-50帧/秒五、显示工作原理显卡是负责计算机图形***终输出的重要部件。它从CPU接受显示数据和控制命令,然后将处理过的图像信号发送给显示器。显卡本身是一个智能的嵌入式系统,其核心是图形处理芯片(GPU),负责完成大量的图像运算和内部控制工作。显示所需的相关数据存放在显存中。本文就显卡对于图像的处理和控制过程进行介绍。显卡处理图像数据的过程1、CPU→显卡CPU将有关作图的指令和数据通过总线传送给显卡。对于现代显卡,由于需要传送大量的图像数据,因而显卡接口在不断改进,从***早的ISA接口到PCI、流行的AGP接口,以及正在普及的PCI-E接口,其数据吞吐能力不断增强。2、显卡内部图像处理GPU根据CPU的要求,完成图像处理过程,并将***终图像数据保存在显存中。对于普通显卡,RAMDAC从显存中读取图像数据,转换成模拟信号传送给显示器。对于具有数字输出接口的显卡,则直接将数据传递给数字显示器。GPU的角色GPU是显卡的核心部件,它负责大量的图像数据运算和内部的控制工作。GPU是否强大,直接影响到显***像加速的性能。它所负责的图像运算有:2D图像加速:负责响应系统发送的GDI命令。3D图像加速:GPU根据3D数据生成多边形,并进行贴图/渲染/光照/雾化等计算,以及Z-Buffer遮挡计算。在***的GPU中,有多条流水线进行3D处理,因而具有强劲的性能。GPU的加速功能可以通过支持程序打开(例如Windows的DirectX),从而分担CPU的计算工作,提高整台电脑的性能。若图形加速功能未打开,则电脑CPU必须承担所有图像生成所需的计算。GPU的控制程序存放在显卡BIOS中,***显卡厂商都提供显卡BIOS数据和升级程序。通过刷新显卡BIOS,可以使显卡具有更强的处理能力并消除旧版的缺陷。显存的作用显存是显卡系统的专用内存,它里面存放图像处理所用的中间数据和***终数据。经过GPU处理后,图像***终以点阵形式存放在显存中。对于不同的显示分辨率和色彩深度,显卡中的***终显示数据***格式不同,不同显示模式所需的显存大小:显示分辨率色彩深度显存大小(字节)640*4808bit300K640*48024bit1.2M1024*76824bit2.034M为了加快显示过程,显存还具有多页结构,允许显示其中一个页面时对另外的页面进行后台更新,更新完毕后再切换到前台显示。由上表可以看到,***终图像数据对于现代显卡的显存(32M、64M甚至更多)仅占很小的一部分。那么多余的显存用来做什么呢?其余的显存用于图像中间数据存放,包括:2D窗口移动、遮挡数据,3D图形的多边形数据、贴图材质数据等,以及GPU计算的中间结果等。六、色彩空间转换公式在做图像处理时,我们一般采用的是RGB空间,但是在某些特殊情况下,我们也会用到其他的颜色空间。本文主要介绍一些常见的颜色空间的概念和转换公式。颜色的实质是一种光波。它的存在是因为有三个实体:光线、被观察的对象以及观察者。人眼是把颜色当作由被观察对象吸收或者反射不同波长的光波形成的。例如,当在一个晴朗的日子里,我们看到阳光下的某物体呈现红色时,那是因为该物体吸收了其它波长的光,而把红色波长的光反射到我们人眼里的缘故。当然,我们人眼所能感受到的只是波长在可见光范围内的光波信号。当各种不同波长的光信号一同进入我们的眼睛的某一点时,我们的视觉***会将它们混合起来,作为一种颜色接受下来。同样我们在对图像进行颜色处理时,也要进行颜色的混合,但我们要遵循一定的规则,即我们是在不同颜色模式下对颜色进行处理的。1.RGB颜色模式虽然可见光的波长有一定的范围,但我们在处理颜色时并不需要将每一种波长的颜色都单独表示。因为自然界中所有的颜色都可以用红、绿、蓝(RGB)这三种颜色波长的不同强度组合而得,这就是人们常说的三基色原理。因此,这三种光常被人们称为三基色或三原色。有时候我们亦称这三种基色为添加色(AdditiveColors),这是因为当我们把不同光的波长加到一起的时候,得到的将会是更加明亮的颜色。把三种基色交互重叠,就产生了次混合色:青(Cyan)、洋红(Magenta)、黄(Yellow)。这同时也引出了互补色(ComplementColors)的概念。基色和次混合色是彼此的互补色,即彼此之间***不一样的颜色。例如青色由蓝色和绿色构成,而红色是缺少的一种颜色,因此青色和红色构成了彼此的互补色。在数字视频中,对RGB三基色各进行8位编码就构成了大约16.7万种颜色,这就是我们常说的真彩色。顺便提一句,电视机和计算机的监视器都是基于RGB颜色模式来创建其颜色的。2.Lab颜色模式Lab颜色是由RGB三基色转换而来的,它是由RGB模式转换为HSB模式和CMYK模式的桥梁。该颜色模式由一个发光率(Luminance)和两个颜色(a,b)轴组成。它由颜色轴所构成的平面上的环形线来表示颜色的变化,其中径向表示色饱和度的变化,自内向外,饱和度逐渐***;圆周方向表示色调的变化,每个圆周形成***环;而不同的发光率表示不同的亮度并对应不同环形颜色变化线。它是一种具有“***于设备”的颜色模式,即不论使用任何一种监视器或者打印机,Lab的颜色不变。RGB=>Lab|X||0.4339100.3762200.189860||R/255||Y|=|0.2126490.7151690.072182|*|G/255||Z||0.0177560.1094780.872915||B/255|L=116*Y1/3forY>0.008856L=903.3*YforY<=0.008856a=500*(f(X)-f(Y))b=200*(f(Y)-f(Z))其中f(t)=t1/3fort>0.008856f(t)=7.787*t+16/116fort<=0.0088563.HSB颜色模式从心理学的角度来看,颜色有三个要素:色泽(Hue)、饱和度(Saturation)和亮度(Brightness)。HSB颜色模式便是基于人对颜色的心理感受的一种颜色模式。它是由RGB三基色转换为Lab模式,再在Lab模式的基础上考虑了人对颜色的心理感受这一因素而转换成的。因此这种颜色模式比较符合人的视觉感受,让人觉得更加直观一些。它可由底与底对接的两个圆锥体立体模型来表示,其中轴向表示亮度,自上而下由白变黑;径向表示色饱和度,自内向外逐渐变高;而圆周方向,则表示色调的变化,形成色环。RGB=>HSBV=max(R,G,B)S=(V-min(R,G,B))*255/VifV!=0,0otherwise(G-B)*60/S,ifV=RH=180+(B-R)*60/S,ifV=G240+(R-G)*60/S,ifV=B若H<0,则H=H+360使用上面从0°到360°变化的公式计算色调(hue)值,确保它们被2除后能试用于8位。4.YUV颜色模式这是电视系统中常用的颜色模式,即电视中所谓的分量(Component)信号。该模式由一个亮度信号Y和两个色差信号U、V组成。它是利用了人眼对亮度信号敏感而对色度信号相对不敏感的特点,将RGB颜色通过亮度信号公式Y=039R+050G+011B转换为一个亮度信号Y和两个色差分量信号U(R-Y)、V(B-Y),即对色差信号进行了频带压缩。毫无疑问,这是以牺牲信号的质量为代价的。RGB<=>YUVY=0.299R+0.587G+0.114BU=-0.147R-0.289G+0.436BV=0.615R-0.515G-0.100BR=Y+1.14VG=Y-0.39U-0.58VB=Y+2.YK颜色模式这是彩色印刷使用的一种颜色模式。它由青(Cyan)、洋红(Magenta)、黄(Yellow)和黑(Black)四种颜色组成。其中黑色之所以用K来表示,是为避免和RGB三基色中的蓝色(Blue,用B表示)发生混淆。该种模式的创建基础和RGB不同,它不是靠增加光线,而是靠减去光线,因为和监视器或者电视机不同的是,打印纸不能创建光源,它不会发射光线,只能吸收和反射光线。因此通过对上述四种颜色的组合,便可以产生可见光谱中的绝大部分颜色了。RGB<=CMYKR=(255-C)*((255-K)/255)G=(255-M)*((255-K)/255)B=(255-Y)*((255-K)/255))
睿通讯达(北京)科技有限公司
业务 QQ: 357684679