四川涂装设备流水线-浩伟电子(在线咨询)-涂装设备流水线
由于调节涂装设备流水线减压阀以控制输出气压,步进电机由PWM单脉冲输出模式控制,电机速度由PWM脉冲频率决定。在设计步进电机控制子程序时,根据涂装设备流水线控制算法模块计算出的控制量确定步进电机控制芯片配置端口的电平,以控制电机的正转,反转和停止进入休眠模式。当步进电机正向旋转时,下拉ENABLE使能控制芯片,上拉复位RESET和睡眠SLEEP,MS1和MS2分别为1高电平和0低电平,配置为1/2步进模式,DIR为高电平电源平板步进电机正向前旋转。反相时,DIR很低。停止时,拉动ENABLE禁用控制芯片并下拉RESET复位控制芯片。根据由气压控制算法计算的输出控制量,确定步进电机控制的转向和调节步骤,然后调用步进电机驱动模块程序进行调节。ADC模拟采样模块编程控制器需要采集输出的动态参数。涂装设备流水线动态参数为输出电压,输出电流,反馈电流,流量气压,雾化气压和总气压。还需要收集压力传感器供电电压作为校正。电压,因此有必要收集7个通道的ADc,并使用DMA模式传输,涂装设备流水线设备,与主程序并行运行,以降低CPU使用率并提高实时性能。ADC使用定时器触发器,涂装设备流水线每隔一段时间触发一次ADC转换,具体取决于控制器设计的控制周期。ADC采样的数据会波动,这将影响控制量的计算。因此,过采样技术,ADC采样配置的采样数据是12位,并且采样数据被累加到16位采样值中以避免单个采样。过度采样误差对反馈控制的影响。涂装设备流水线输出试验为控制器输出测试,原本需要使用喷枪配合,但由于实验室条件的限制,喷枪输出的静电高达上万伏,电泳涂装设备流水线,测量条件有限。因此,在输出端连接等效负载电阻来测试输出电压和电流,涂装设备流水线,并验证采样电路和采样程序。空气源气由空气压缩机供给,并对气压传感电路和气压调节模块进行了测试。涂装设备流水线在电压控制模式下,输出电压设为SOKV。用万用表测量输出电压为1043V。操作面板显示为SOKV,喷枪的电流显示为43UA。由于喷枪放大后输出电压达不到SOKV,输出电压应由喷枪4762的升压因子除以,即SoooOV/4762=1049V。涂装设备流水线在电流模式下,喷枪的电流设定为36μA,输出电压为8.72V。d是万用表,静电电压是41KV,静电电流是36uA,显示在操作面板上。涂装设备流水线由于等效负载电阻值为5052,输出电流测量的放大倍数为_5,计算电流为3_SuA,基本相同。其结果是,控制器电路的输出基本上是正常的。涂装设备流水线从左边的空气压缩机输出的总气压和由右边的控制器(右边的三位数管)测量和显示的总气压。当前设定的流量压力400KPa,雾化压力1_SOKPa,启动控制器后,压力输出如图6-11所示(右侧数字管中间的流量压力,四川涂装设备流水线,下方的雾化压力)。经测试,控制器的电压输出范围为6×21V,输出电压范围可设定为30×100kV;输出电流为0-600毫安,转换为喷枪电流为0-176UA;流量和压力调节范围为200×700kPa;雾化压力调节。范围为70-7000kPa。根据试验结果,该控制器完全实现了设计目标表2中设计的调节范围。临朐浩伟电子设计的涂装设备流水线喷雾控制器可分为三个部分:电源,控制板和操作面板。电源使用开关电源将220V工频电源转换为24V_5V电源,用于微控制器的微控制器系统和输出电路。控制板是控制器的核心,主要负责控制和采集输出。操作面板是完成控制器功能的前提,是人机交互的界面。涂装设备流水线操作面板的设计包括按键输入和LED数码管显示,符合静电喷涂控制柜的要求和控制器及外部控制系统的远程监控。浩伟电子提出的涂装设备流水线通信,也支持现场参数配置。显示功能允许单独的绘画作业。控制板是底部控制的核心。MCU模块通过计算控制每个模块。每个模块的控制电路控制输出结构,并通过ADC采样和测量检测每个输出参数。主控MCU电路通过I/O口连接触发信号处理电路,接收外部触发信号,并结合静电喷雾控制器的工作状态输出触发使能信号;输出电压,电流和电输出状态通过枪接口信号处理电路获得。反馈信号结合静电喷涂控制器的工作模式和工作状态输出控制电压,调节输出涂装设备流水线静电电压或静电电流;通过气压信号处理电路得到流量气压和雾化气压反馈信号,结合静电喷雾控制器的工作方式和工作状态输出步进电机控制信号调节流量气压和雾化空气压力输出。四川涂装设备流水线-浩伟电子(在线咨询)-涂装设备流水线由临朐浩伟电子设备有限公司提供。四川涂装设备流水线-浩伟电子(在线咨询)-涂装设备流水线是临朐浩伟电子设备有限公司()今年全新升级推出的,以上图片仅供参考,请您拨打本页面或图片上的联系电话,索取联系人:姚经理。)
临朐浩伟电子设备有限公司
业务 QQ: 3714261