![](https://img3.dns4.cn/pic/266778/p4/20190319084021_9248_zs_sy.jpg)
临沂9-22风机品质***无忧
几何模型建立与网格划分计算模型采用掘进工作面4-72-5.6A防爆防腐蚀的离心式通风机,其主要参数:电机功率22kW,转速2930r/min,流量10122~25736m3/h,全压4152~2330Pa。其主要由进风口、集流器、叶轮和蜗壳组成。9-22风机集流器中添加了米字形结构与环形挡环。风机结构复杂且叶片外形不规则,因此生成结构化网格比较困难,相反非结构化网格适应能力强,在处理复杂结构时有利于网格的自适应。因此9-22风机采用四面体非结构化网格。使用ANSYS软件中的CFD软件进行网格划分,加米字形集流器模型网格数1072503,网格节点数184910;普通圆弧形模型网格数1296832,网格节点数223847。以离心风机在掘进工作面环境下的运行工况为依据,进行9-22风机参数设置:流量取22806.54m3/h,流速取6.33515m/s,质量流量取7.4913kg/s。把Pro/E建立的几何模型导入Fluent中并对几何模型的边界条件计算参数进行设定。其中入口类型采用速度进口,出口设为压力边界条件,本计算采用的样机是矿用式离心风机,出口静压可以近似为0,蜗壳内壁及叶轮壁面粗糙度均取0.5,集流器、叶轮、蜗壳等各流体区域结合处的公共面采用interface边界类型面,将叶片的压力面和吸力面以及叶轮前盘、后盘和转轴的内外表面一起定义为旋转壁面。环境压力为101325Pa,取粉尘流体密度ρ=1.225kg/m3。将9-22风机模型导入ICEM进行网格划分,网格划分过程中对离心风***键部位要进行加密处理,如叶轮、集流器、蜗舌、进气箱的转角处等。计算时采用SIMPLE压力速度耦合方法进行。为改善9-22风机受气体粘性影响导致流动分离加剧的现象,在传统蜗壳型线设计理论的基础上,研究气体粘性力矩对蜗壳壁线分布的影响,并采用动量矩修正方法对其进行改型设计。另外,为真实反映风机内流场分布情况,在标准k-ε计算模型的扩散项中加入粘性应力作用,使其高计算误差降低至3%。对比分析改型前后风机数值模拟计算和试验测量结果可知,采用修改的k-ε模型进行计算发现改型后风机内旋涡强度减小,蜗壳出口靠近蜗舌处流动分离得到改善。设计原理分析原风机蜗壳内壁型线采用的是传统蜗壳型线设计方法,即不考虑壁面粘性摩擦的影响,气流动量矩保持不变,运用不等边基圆法绘制的近似阿基米德螺旋线。试验结果表明:改型9-22风机出口静压提升约25Pa,较大全压效率较原型机提升约10%。同时,由于蜗壳张开度扩大能够***流动分离,使蜗舌附近区域的旋涡强度及其影响区域减小,从而有效地降低了多翼离心风机噪声2.5dB。多翼离心风机广泛应用于国民经济的各个领域,是工业生产中主要耗能设备之一,蜗壳作为离心风机中不可或缺的基本元件,其结构的不对称性及内部流动的复杂性会对叶轮出口气流角造成较大影响,使其沿圆周方向呈现出明显的不对称性。而在风机实际运行过程中,9-22风机叶轮出口气流与蜗壳壁面间存在强烈的非定常干涉,使得蜗壳壁面成为风机的主要噪声源。因此提高蜗壳型线设计水平,不仅能改善风机气动性能,还能达到降低噪声的效果。(4)进口调节阀宜优先选用叶片阀,它在工作时能实现管道内输送介质的均匀分布,防止产生剧烈涡流而发生振动。目前国内外学者对离心风机蜗壳型线的研究,主要集中在寻找能真实反映蜗壳内流体流动状态的设计方法。9-22风机性能试验原理及其装置为了验证修正后数值计算模型的准确度,对原风机的不同工况气动性能试验。将修正前后数值计算模型预测原型机性能结果与试验值作对比分析,由数据可知,采用标准k-ε模型预测的风机性能曲线较试验值存在一定误差,其较大误差值达9.5%,修正的k-ε模型,各流量工况下9-22风机出口静压计算值与试验值吻合,其性能曲线趋于重合,两者误差值明显减小,且较大误差降低至3%,充分验证了所采用的数值计算模型修正方法的可行性,同时为下文9-22风机性能的准确度和可靠性预测提供支撑。设计原理分析原风机蜗壳内壁型线采用的是传统蜗壳型线设计方法,即不考虑壁面粘性摩擦的影响,气流动量矩保持不变,运用不等边基圆法绘制的近似阿基米德螺旋线。试验噪声分析离心风机的噪声按照流体动力声源的发声机制,分为三类:1)单极子,2)偶极子,3)四极子,风机正常工作状态下产生的噪声主要来源于偶极子源。而实际流动过程中,气体粘性作用常导致其速度在过流断面上呈现的分布不均匀现象。对于低速小型多翼离心风机而言,由于气体流道狭窄,受粘性作用的影响,风机内壁面边界层分离加剧,经过叶轮加速的气体流速沿蜗壳径向方向逐渐减小,而在9-22风机蜗壳出口处,由于同时受到蜗舌结构和蜗壳壁面的影响,其流速为管道流速度分布,受粘性作用的影响,蜗壳内流体于整个流道空间内呈现速度分布不均匀的现象,因此在实际流动过程中,流体动量矩并不是不变的,而是随流动的进行不断减小,故基于动量矩守恒定律设计的传统蜗壳型线存在动量修正的必要。改型设计方法由于气体粘性力无法通过简单的公式运算获得,且其大小受气体速度的影响,因此本文采用一种简单化的求解方法,即基于传统不等边基圆法,9-22风机运用改进后的k-ε模型对原风机进行数值模拟,设置如图8所示的4个监测截面,其方位角φ分别为90°、180°、270°、360°。通过Fluent后处理计算得出蜗壳壁面区域于以上4个截面处所受粘性力大小Fν,测量力矩中心至力原点距离R,由额定工况下风机总质量流量q计算得单位质量流体所受黏性力矩平均值mFR/q。对风机进出口安装条件有限制并且对噪声有一定要求的离心风机,吸声蜗壳是较好的选择。)