环保除尘风机来电咨询,冠熙风机质量可靠
整机压力云图分布通过Fluent软件对掘进工作面离心风机进行流场数值模拟,模拟得出在同流量下,加米字集流器和普通集流器离心风机压力云图可以看出,风机静压从进口至出口逐渐增大,在蜗壳外达到较大。加米字集流器风机进口静压明显高于普通集流器离心风机,其较大静压达到2510Pa,普通集流器达到1440Pa;加米字风机的全压较大可达5860Pa,而普通集流器较大达到4260Pa。将环保除尘风机模型导入ICEM进行网格划分,网格划分过程中对离心风***键部位要进行加密处理,如叶轮、集流器、蜗舌、进气箱的转角处等。环保除尘风机集流器的压力用Tecplot软件对模拟结果进行后处理,可以对离心风机集流器的受压进行对比分析。加米字形集流器和普通圆弧形集流器内部流场受压分布所示,环保除尘风机米字形集流器入口压力为-8000Pa,到集流器出口达到-18000Pa,压差10000Pa;普通圆弧形集流器入口压力为-8000Pa,到集流器出口达到-16000Pa,压差8000Pa,小于米字形集流器。同时也可以看出,加米字形集流器压力梯度变化趋势比普通圆弧形集流器平缓,对稳定进口气流,保证气流的均匀及稳定有更明显的作用。综合考虑计算精度和计算效率可知,当网格数为25万左右时预测结果较为合理,***终确定整个计算域的网格数为2513558。环保除尘风机对比分析在额定转速下,假定风机进出口处截面上动压静压均匀分布,对风机进口、出口压力及压差,集流器进出口压力及其压差进行统计。取点方法:在截面中心为轴心,周边均匀取了20个点,之后计算取其平均值,可以看出,同流量下,加米字形集流器的静压和全压差分别为-4389.0Pa和-2252.9Pa,而普通圆弧形集流器的压差为-982.9Pa和-32.1Pa,相比可以看出,环保除尘风机加米字形集流器导流效果比普通圆弧形集流器好。但是同流量下,普通圆弧形集流器比加米字形集流器风机压差大,有效值大2366Pa,风机全压差加米字形比普通圆弧形小2350.8Pa,减少的这部分能量用于摩擦发热。使用ANSYS软件中的CFD软件进行网格划分,加米字形集流器模型网格数1072503,网格节点数184910。说明集流器经过改造提高了粉尘流的导流能力,提高了风机的性能。本文对掘进工作面环保除尘风机集流器结构进行了改进研究。并对改进前、后的结构的集流器导流效果做了理论分析。然后应用Fluent流体软件对其进行了数值建模分析,充分认识离心分机内部流场流体的流动规律,并得到集流器及整个风机的压力云图,截面所受阻力云图,并取点做了统计分析。研究结果表明:环保除尘风机加米字形集流器使集流器进出口压差增加,明显地起到对粉尘流场的导流作用。加进气箱后,离心风机的全开流量降低,与无进气箱相比,流量降低了16。但是集流器由于增加米字形支撑架,造成集流器截面的摩擦力增大,消耗了风机的一部分动能。但对大型除尘离心风机总体来看,采用该结构大大减少制造难度和加工成本,提高了经济效益。环保除尘风机性能试验原理及其装置为了验证修正后数值计算模型的准确度,对原风机的不同工况气动性能试验。将修正前后数值计算模型预测原型机性能结果与试验值作对比分析,由数据可知,采用标准k-ε模型预测的风机性能曲线较试验值存在一定误差,其较大误差值达9.5%,修正的k-ε模型,各流量工况下环保除尘风机出口静压计算值与试验值吻合,其性能曲线趋于重合,两者误差值明显减小,且较大误差降低至3%,充分验证了所采用的数值计算模型修正方法的可行性,同时为下文环保除尘风机性能的准确度和可靠性预测提供支撑。设计原理分析原风机蜗壳内壁型线采用的是传统蜗壳型线设计方法,即不考虑壁面粘性摩擦的影响,气流动量矩保持不变,运用不等边基圆法绘制的近似阿基米德螺旋线。在实际工作中,常用的打表工具———磁性表座虽然使用简便,但却存在着刚性不足和适用条件受限的不良情况。而实际流动过程中,气体粘性作用常导致其速度在过流断面上呈现的分布不均匀现象。对于低速小型多翼离心风机而言,由于气体流道狭窄,受粘性作用的影响,风机内壁面边界层分离加剧,经过叶轮加速的气体流速沿蜗壳径向方向逐渐减小,而在环保除尘风机蜗壳出口处,由于同时受到蜗舌结构和蜗壳壁面的影响,其流速为管道流速度分布,受粘性作用的影响,蜗壳内流体于整个流道空间内呈现速度分布不均匀的现象,因此在实际流动过程中,流体动量矩并不是不变的,而是随流动的进行不断减小,故基于动量矩守恒定律设计的传统蜗壳型线存在动量修正的必要。改型设计方法由于气体粘性力无法通过简单的公式运算获得,且其大小受气体速度的影响,因此本文采用一种简单化的求解方法,即基于传统不等边基圆法,环保除尘风机运用改进后的k-ε模型对原风机进行数值模拟,设置如图8所示的4个监测截面,其方位角φ分别为90°、180°、270°、360°。加米字集流器风机进口静压明显高于普通集流器离心风机,其较大静压达到2510Pa,普通集流器达到1440Pa。通过Fluent后处理计算得出蜗壳壁面区域于以上4个截面处所受粘性力大小Fν,测量力矩中心至力原点距离R,由额定工况下风机总质量流量q计算得单位质量流体所受黏性力矩平均值mFR/q。)