光纤间隙传感器服务至上“本信息长期有效”
叶尖有射流时射流孔后气膜冷却效率较高,而叶尖前缘、压力面侧以及前缘附近的吸力面侧气膜冷效较低,这些区域都是叶尖冷却射流无法达到的区域。叶尖间隙分离涡影响范围较小,而泄漏涡的影响范围能达到75%叶高以上的叶尖区域。主要针对变速下同步振动、恒速下同步振动以及恒速下异步振动三种情况分别提出了三种不同的振动参数辨识方法,并获得***发明专利两项。受间隙泄漏流动影响,叶顶前缘由于边界层较薄,换热系数会较高,叶顶中部的泄漏流量较大,换热系数也较高,而叶顶压力面侧以及吸力面侧由于分离涡和泄漏涡核对壁面的扰动,换热系数也会较高。围绕叶尖间隙测量、主动控制及阻尼识别方法等开展实验研究围绕叶尖间隙测量、主动控制及阻尼识别方法等开展实验研究。通过优化静态径向标定和静态周向标定技术,本文提出一种电涡流触发脉冲法,以获取电涡流传感器在叶片不同相对位置的灵敏度。电涡流触发脉冲法将叶尖间隙测量传感器与键相相融合,能够较好地解决电涡流传感器在高线速度下因带宽受限引起的欠采样问题。然而,叶尖间隙过大会降低发动机的工作效率,甚至引起发动机喘振,造成发动机损伤。搭建了叶片健康监测原理实验台,并辅以的静态标定系统。在不同转速下开展叶尖间隙测量实验,结果表明本文提出的电涡流触发脉冲法能够有效改善叶尖间隙的测量准确性。后,从精度、稳定性及有限元分析等三个角度证实了该方法的有效性。)