硬质合金刀具规格信息推荐
在批量加工如图1所示的高温合金球形轴承内球面时,原编制工艺道路为:粗加工→去应力→精车内球面→内球面开安装槽→探伤→查验→油封。为验证工艺,实验选用如图2所示高速钢尖刀(假定刀尖圆弧半径为零),前角为0o,刃倾角为0o,调整刀尖与车床主轴反转中心线等高,在新购精细数控车床上编程精车3件45钢制内球面φ19.150.0130mm。由于通用内径量具无法实施在线丈量内球面φ19.150.0130mm,所以在车床上选用改制专用测具(见图3)检测,直径合格,经三坐标丈量机复检,直径合格,球面概括度差错为0.005mm(小于直径公役一半),合格。但将零件材料改为高温合金GH605,刀具改为YW1硬质合金尖刀后,用与高速钢尖刀同样的切削条件试车3件,经三坐标查验全部不合格,原因是球面概括度差错为0.03~0.05mm,经仔细观察发现刀尖已磨损,且编程时没有选用刀尖圆弧半径补偿程序。为此,改用如图4所示SANDEVIK菱形可转位机夹硬质合金刀具VCMW070204加工,刀尖圆弧半径为rε=0.4mm,前角为0o,刃倾角为0o,调整刀尖与车床主轴中心线等高,选用刀尖圆弧半径补偿程序编程,加工了3件,经三坐标丈量查验,3件全部不合格,原因是球面概括度差错为0.015~0.02mm。至此,证明原工艺是不现实的。为了、经济批量加工,改用了如下工艺道路:粗加工→去应力→精车内球面→内球面开装配槽→用外球面形状研磨具研磨内球面达图样要求→探伤→查验→油封。工艺改进后已成功加工出一批合格产品。2.精车内球面概括度超差问题早在数控车床没有普及的时代,用成型车刀精车之后再研磨的工艺办法成功地加工出如图5所示的球面上色量规(其技术要求是:环规按塞规上色修合,上色面积100%)。现在数控车床替代了一般车床,数字程序替代了原来成型车刀,却没有加工出图1所示的零件。现剖析如下:(1)精细球面加工工艺基础。精细球面能够看作是精细半圆(见图6)绕经过该半圆圆心的剖分线反转一周构成的反转体。在一般车床上用圆弧构成型样板刀加工时(见图7),样板刀圆弧半径是所车球的半径,样板刀圆弧刃的圆心有必要准确调整到车床主轴反转轴线上,且圆弧刃地点平面与车床主轴反转中心线等高共面,才干车出精细圆球面。为了完成以上条件,照顾到加工对刀便利,通常调整圆弧样板切削刃安装高度,使圆弧刃地点平面与车床主轴反转轴线等高(共面),再经过车削丈量车出球面直径,确保圆弧切削刃圆心坐落车床主轴反转中心线上。当圆弧刃地点平面与车床主轴反转中心线共面但圆弧刃圆心与车床反转中心间隔不为零时,车出的球面就不圆,而是椭球(见图8)。当圆弧刃平面平行于车床主轴反转中心线,但高于或低于车床反转轴线(即不共面)时,只要直径大于所车球面的水平截面圆直径,与圆弧刃构成的圆位置重合时,才有或许车成圆球,但此刻所车球面直径已大于要求直径(见图9)。当圆弧构成型切削刃或数控刀尖车出的轨道圆弧(以下简称母线圆弧)地点平面平行于车床主轴反转中心线,但高于或低于车床主轴反转中心线(以下简称车床轴线)时,即便母线圆弧半径很准确且其圆心位置也准确坐落包括车床轴线的铅垂面内,假定图样要求球面半径为R,母线圆弧地点平面与车床轴线间隔为H,则车出的球面半径为(R2H2)0.5mm,若为了确保球面半径R持续进刀,则车成椭球(见图10)。总归,有必要确保母线圆弧半径和母线圆弧圆心准确调整到车床轴线上,且母线圆弧与车床轴线等高共面,才干车出预订半径的精细圆球,三者缺一不可。(2)数控车床加工精细内球面。首要调整车刀安装高度使刀尖与数控车床轴线等高,当运用刀尖圆弧半径为零(假定理想刀尖)的车刀编程时,使刀尖走过的圆弧轨道半径等于球面半径;当运用刀尖圆弧半径不等于零的圆弧刀尖车刀加工时,运用刀尖圆弧半径补偿程序编程。对不具备刀尖圆弧半径主动补偿功用的经济型数控车床,假定图样要求球面半径为R,刀尖圆弧半径为rε,可选用刀尖圆弧圆心轨道编程,刀尖圆弧圆心编程半径为(R-rε)。这样切削球面时,圆弧切削刃逐点参加切削,母线圆弧半径R相当于半径为(R-rε)的圆等距rε后得出的(见图11)。当刀尖与数控车床轴线不等高时,假如按母线圆弧圆心和车床轴线坐落同一铅垂面准则进刀,在不考虑其他原因的状况下车出的球面直径差错由公式(1)核算:ΔR=(R2H2)0.5-R(1)式中,R为所车球面半径,H为刀尖走过的母线圆弧平面高于或低于车床轴线的间隔。当R=19.15÷2=9.575(mm),ΔR=0.013÷2=0.0065(mm)。由公式(1)核算出H=0.35mm。也就是说,当刀尖高于或低于车床轴线0.35mm时,车出的球面就超出公役带。在批量生产高温合金零件时,遍及运用可转位不重磨机夹刀片,经查阅SANDEVIK刀具手册,精度等级为M的刀片厚度公役为±0.13mm,假定地一次将切削刃调整到与车床轴线等高,那么,当替换刀片时,如不调整刀尖高度,坏的状况是刀尖与车床轴线间隔为0.26mm,其小于0.35mm,可见独自由刀尖高度引起的球面差错不会超出公役带。当刀尖高度与车床轴线等高时,在不考虑机床进给空隙影响时,刀尖圆弧半径差错是影响球面加工的直接要素。肯定的尖刀是不存在的,假定刀尖圆弧半径为零的车刀耐用度很低,不适合批量加工高温合金零件,选用刀尖圆弧半径补偿程序编程时,有必要输入刀尖圆弧半径数值,经查阅SANDEVIK刀具手册,仿形加工用圆弧切削刀具刀尖圆弧直径2rε公役为±0.02mm。而SANDEVIK刀片VCMW070204,刀尖圆弧半径为rε=0.4mm,没有给出公役,查国标GB2078—87,刀片VCMW070204刀尖圆弧半径为rε=0.4±0.10mm,数控系统主动将理想刀尖圆弧半径补偿到母线圆弧加工中,刀尖圆弧半径差错以1﹕1倍率影响到加工球面半径差错。经过作图与理论核算,能够算出,在图1所示轴向长度14mm范围内,包括在公役为0.0065mm圆度公役带内理想圆弧半径为R=9.575±0.0139mm,当不考虑其他要素影响,按刀尖圆弧圆心R=(9.575-0.4)mm编程时,刀尖圆弧半径有必要控制在rε=0.4±0.0139mm。由此可推理,尖刀加工,刀尖磨损后刀尖圆角半径有必要是rε≤0.0139mm才有或许车出符合公役要求的内球面,当刀尖磨损至rε>0.0139mm时,将车出Z向偏长的椭圆形球面;假如运用圆弧刀尖刀具加工,刀具半径有必要控制在rε=0.4±0.0139mm,而刀片VCMW070204的刀尖rε=0.4±0.10mm,不符合球面的精度加工要求。可见,独自由刀尖圆弧半径引起的球面加工直径差错已超出球形轴承内球面φ19.150.0130mm的加工要求,假如运用刀片VCMW070204加工,有必要精修刀尖圆弧半径精度,使得rε<0.0139mm。(3)进给丝杠螺母副空隙对加工球面的影响。现代数控车床遍及选用滚珠丝杠螺母副作为伺服进给执行元件,尽管滚珠丝杠螺母副进行了预紧,在受载及运转中不可避免会发生回程空隙。在编程时有必要引起注意,避免回程空隙引起形位差错。在加工图4所示零件时,能够选用一段程序从A点车到C点,但车刀在经过B点时,X轴进给由正向转换为反向,反向脉冲使丝杠反转,消除空隙所需的反转没有使车刀得到应有的X反向进给,形成AB段与BC段形状不对称(见图12),形成球面不圆。当回程空隙超越0.065mm时,车出的球面就超出公役带。因此,当车削精细球面时,假如车床回程空隙超越零件公役1/3,有必要编两段程序,一段从A到B,另一段从C到B。这样避免了图12所示形状差错,但会发生如图13所示由Z轴进给反向形成的形状差错,尽管左右是对称的,但晦气于球形研磨东西定心。为此,在编程时选用积极补偿的办法,使圆弧AB段、CB段Z向各少进给0.005mm(沿X向少进给0.0000013mm),即便AB、CB两端圆弧在B点相交,B点不再是圆的象限点,而是脱离象限点的圆上点,精车后椭球形状如图14所示。刀具钝化什么是刀具钝化通过对刀具进行去毛刺,平坦,抛光的处理、从而进步刀具质量和延伸使用寿命。刀具在精磨之后,涂层之前的一道工序,其称号现在国内外尚不统一,有称“刃口钝化”、“刃口强化”、“刃口珩磨”、“刃口预备”等。为什么要进行刀具钝化经一般砂轮或金刚石砂轮刃磨后的刀具刃口,存在程度不同的微观缺口(即细小崩刃与锯口)。在切削进程中刀具刃口微观缺口极易扩展,加速刀具磨损和损坏。现代高速切削加工和自动化机床对刀具功能和稳定性提出了更高的要求,特别是涂层刀具在涂层前必须通过刀口的钝化处理,才能保证涂层的结实性和使用寿命。刀具钝化的意图刃口钝化技术,其意图就是处理刃磨后的刀具刃口微观缺口的缺陷,使其锋值削减或消除,到达油滑平坦,既锋利巩固又经用的意图。刀具钝化的主要效果为:刃口的圆化:去除刃口毛刺、到达经确一致的倒圆加工。刃口毛刺导致刀具磨损,加工工件的外表也会变得粗糙,经钝化处理后,刃口变得很润滑,极大削减崩刃,工件外表光洁度也会进步。对刀具凹槽均匀的抛光,进步外表质量和排削功能。槽外表越平坦润滑,排屑就越好,就可完成更高速度的切削。一起外表质量进步后,也减小了刀具与加工资料咬死的***性。并可削减40%的切削力,切削更流畅。涂层的抛光去除刀具涂层后产生的突出小滴,进步外表光洁度、添加润滑油的吸附。涂层后的刀具外表会产生一些细小的突出小滴,进步了外表粗糙度,使得刀具在切削进程简单产生较大的摩擦热,下降切削速度。通过钝化抛光后,小滴被去除,一起留下了许多小孔,在加工时可以吸附更多的切削液,使得切削时产生的热量大大削减,可以极大得进步切削加工的速度。一、前言机械加工是指通过一种机械设备对工件的外形尺寸或性能进行改动的过程。按加工方式上的不同可分为切削加工和压力加工。二、机械加工基本常识以下这些机械加工常识的汇总:对切削温度的影响:切削速度,进给率,背吃刀量;对切削力的影响:背吃刀量,进给率,切削速度;对刀具耐用度的影响:切削速度,进给率,背吃刀量。当背吃刀量增大一倍时,切削力增大一倍;当进给率增大一倍时,切削力大约增大70%;当切削速度增大一倍时,切削力逐步减小;可以依据铁屑排出的情况判断出切削力,切削温度是否在正常范围内。当所量的实践数值X与图纸直径Y之大于0.8时车的凹圆弧时,副偏角52度的车刀(也就是我们常用的刀片为35度的主偏角93度的车刀)所车出的R在起点位置的当地可能会擦刀。铁屑颜色所代表的温度:白色小于200度***220-240度暗蓝290度蓝320-350度紫黑大于500度手动刀尖R补偿公式:从下往上车倒角:Z=R*(1-tan(a/2))X=R(1-tan(a/2))*tan(a)从上往下车倒角将减改成加即可。三、在数控车加工时,以下几点应特别注意:(1)关于目前我国的经济数控车床一般选用的是一般三相异步电机通过变频器完结无级变速,假如没有机械减速,往往在低速时主轴输出扭矩不足,假如切削负荷过大,简单闷车,不过有的机床上带有齿轮档位很好的处理了这一问题;(2)尽可能使刀具能完结一个零件或一个作业班次的加作业业,大件精加工特别要注意中心避免半途换刀确保刀具能一次加工完结;(3)用数控车车削螺纹时因尽可能选用较高的速度,以完结,出产;(4)尽可能运用G96;(5)高速度加工的基本概念就是使进给超过热传导速度,从而将切削热随铁屑排出使切削热与工件阻隔,确保工件不升温或少升温,因而,高速度加工是选取很高的切削速度与高进给相匹配一起选取较小的背吃刀量;(6)注意刀尖R的补偿。刃口钝化的刀具切削刃描摹上的微观缺陷大幅缩减,刃口崩坏的几率大幅下降,能够延常刀具使用寿命50%-400%。因此,开展刀具刃口钝化的研讨对进步我国刀具产品的质量具有十分重要的含义。现在,国外的刀具制造厂已广泛选用刃口钝化技能,从国外引入的数控机床或者生产线所使用的刀具,其刃口已全部经过钝化处理,不只进步了工件外表质量,下降了刀具成本,一起也带来了巨大的经济效益。刀具钝化办法有振荡钝化、磨粒尼龙刷法钝化、磁化法钝化和立式旋转钝化等,立式旋转钝化进程实际上是涣散固体颗粒对刀具刃口效果的进程。含磨粒的刀具刃口钝化法具有重复性好、质量高和成本低一级特色,是现在首要选用的刀具刃口钝化办法,通过刀具和磨粒的相对运动实现刃口钝化,磨粒多选用金刚石、CBN和碳化硅颗粒等。现在,关于磨粒效果机理研讨的比较少,首要有冲击单颗磨粒、冲击多磨粒磨损、刀具和切屑间存在磨粒、磨料水射流和半固着磨粒等,***研讨磨粒类型、磨粒尺寸和冲击速度对外表的影响规则,而关于涣散磨粒对工件外表效果机理的研讨更少。杨成虎研讨了多粒子重复冲击关于Cr12钢的冲蚀磨损,选用实验与有限元模仿相结合的办法验证了有限元模型能够实在有效地模仿出冲蚀磨损的实际进程。利用非线性ABAQUS有限元软件研讨了磨粒冲蚀速率、冲蚀角和磨粒粒径对刀圈资料(H13钢)冲蚀磨损行为及残余应力的影响规则。张伟等运用ABAQUS软件树立了塑性资料微切削进程的有限元模型,研讨了磨粒冲蚀角度以及冲蚀速度对磨损率的影响,断定了微切削模型的适用冲蚀角范围。为了取得合适的钝化刃口形状,进步切削进程的稳定性,需求研讨涣散固体磨粒对刀具刃口的钝化机理。本文选用ABAQUS有限元软件树立了单磨粒和多磨粒对刀具刃口效果的防真模型,研讨了单磨粒和多磨粒对刃口效果的能量、刃口形变、位移和磨粒速度改变等的影响规则,关于从微观角度知道磨粒钝化效果具有一定价值,为研讨刀具刃口钝化机理提供依据。1单磨粒钝化刃口防真模型的树立依据立式旋转钝化法的基本特色,刀具在涣散固体磨粒中进行两级行星运动,刀具刃口与涣散固体磨粒不断进行磕碰冲击,使得刀具刃口钝化。刀具沿着一定的轨迹进行运动,而涣散固体磨粒的运动规则相对随机。因此,涣散固体磨粒对刀具刃口的钝化进程是十分复杂的。作为非线性有限元处理工具,ABAQUS在处理复杂问题和模仿高度非线性问题上有极大优势。选用ABAQUS软件树立磨粒对刀具刃口钝化的防真模型。①刀具钝化模型的简化:因为磨粒相关于刀具刃口要小得多,能够将刀具刃口看作无限大,底端固定不动,粒子向刀具刃口冲击。②磨粒:磨粒选用80目碳化硅,颗粒形状设为球形。③刀具:选用硬质合金刀具,刀具刃口尺寸设为0.5mm×0.25mm×0.1mm。④网格划分:将刀具刃口与磨粒触摸部分的网格区域划分得略细,磨粒的母线布置种子数目为10,挑选显式线性三维应力单元C3D4。刀具刃口种子数目分别设为10和25,磨粒单元形状为Tet(四面体),完成网格划分。⑤防真设置:触摸属性为Contact,冲击速度设置为100m/s,核算剖析步时刻为5E-5s,设置20个剖析步,选用job模块进行求解。2单磨粒钝化刃口防真结果(1)刀具刃口应力改变规则单磨粒对刀具刃口效果的应力矢量云图见图1。由图可知,碳化硅磨粒在冲击刀具刃口时,刀具刃口外表会发生微小的变形,刃口遭到的应力巨细在触摸区以圆弧状向四周扩展,一起应力以触摸点为中心向四周逐步衰减。刃口被冲击的外表略微下凹,就像一个小球在地上砸出了一个坑相同。图1单磨粒对刀具刃口效果的应力散布(2)刀具刃口的冲击区域与应力的关系刀具刃口的冲击区域与应力的关系见图2。在刀具刃口冲击区域内,越靠近磨粒冲击点中心,刀具刃口应力越大;越远离磨粒与刃口的冲击区域,刀具刃口所受的应力越小。(3)刀具刃口的位移改变规则单磨粒对刀具刃口效果的位移曲线见图3。在刀具刃口钝化进程中,碳化硅磨粒与刃口的冲击十分时间短。当碳化硅磨粒从0时刻开端运动且当时刻到达7.5E-06s时,碳化硅磨粒的位移到达蕞大。尔后,磨粒开端反弹。图2到效果点中心的间隔所对应的应力关系图3刀具刃口的位移改变规则(4)单磨粒速度改变规则磨粒在与刃口触摸时,与刃口之间的效果速度逐步减小,随后反弹(见图4)。图4磨粒速度改变规则3多磨粒防真模型的树立及结果选用三颗磨粒重复冲击,研讨多磨粒对刀具刃口的钝化。边界条件与资料参数及边界的界定与单磨粒模型共同。冲击速度为300m/s,多磨粒对刀具刃口钝化的防真模型见图5。图5多磨粒对刀具刃口效果的防真模型(1)刀具刃口的应力散布图6为地一颗磨粒对刀具刃口冲击的应力云图。由图可知,在地一剖析步t=2.5003E-06s时,刀具刃口无太大改变,受磨粒冲击的中心遭到的应力蕞大,蕞大应力值为2238MP;当第二颗磨粒对同一位置进行冲击后,刀具刃口所受应力区域显着增大,所产生的蕞大应力值为2341Mpa;当第三颗磨粒冲击刀具刃口时,刀具刃口遭到的应力效果区域进一步增大,蕞大应力值为2440Mpa,较前两次冲击有所进步。图6地一颗磨粒冲击刀具刃口的应力散布(2)磨粒速度改变规则多磨粒冲击刀具刃口的速度改变规则见图7。在0s时,地一颗磨粒开端与刀具刃口磕碰,随后磨粒速度开端下降,直至越过零点成为负值。磨粒速度为负是因为磨粒发生了回弹,磨粒对刀具刃口产生磨损。在1.0E-5s、2.0E-5s时,第二颗磨粒、第三颗磨粒分别与刀具刃口效果,效果方式和地一颗磨粒相同。图7三颗碳化硅磨粒速度改变规则刀具刃口在三颗磨粒冲击下的位移曲线见图8。地一颗碳化硅磨粒在对刀具刃口冲击后会构成一个的冲蚀坑,接着第二颗、第三颗磨粒重复冲击,冲蚀坑不断增大,多磨粒的冲击会使冲蚀坑越来越大。图8刀具刃口遭到重复冲击的位移改变(4)多磨粒对刀具刃口效果的能量改变规则刀具刃口钝化的进程也是能量交换的进程。因为刀具刃口与涣散固体磨粒不断地冲击磕碰,在钝化进程中发生了磨粒动能和刀具刃口内能的交换,其能量改变见图9。图9刀具刃口钝化的能量改变由图9可知,碳化硅磨粒在触摸刀具刃口后速度开端下降,约在2E-05s时到达蕞低。磨粒的动能因为速度的减小而减小,大约在2E-05s时到达蕞低。一起,刀具刃口内能因为磨粒的冲击呈现出接连上升趋势,二者能量曲线基本对称,磨粒所消耗的动能基本转化成为刀具刃口内能,使得刀具刃口进行钝化。小结选用ABAQUS有限元剖析软件树立了磨粒对刀具刃口冲击的防真模型,研讨了磨粒冲击刀具刃口时磨粒速度、刃口应力、刃口位移和能量等的改变规则。首要定论如下:(1)当单磨粒对刀具刃口进行钝化时,刀具刃口的应力在冲击区域以圆弧状向四周扩展。碳化硅磨粒与刃口的冲击十分时间短,磨粒从零时刻开端运动,当时刻到达7.5E-06s时,碳化硅磨粒的位移到达蕞大,尔后,磨粒开端反弹。(2)当多碳化硅磨粒对刀具刃口进行不断冲击时,受力区域不断增大,刀具刃口所受应力增大,冲蚀坑不断增大。)
常州昂迈工具有限公司
姓名: 黄明政 先生
手机: 18606205012
业务 QQ: 932023452
公司地址: 江苏省常州市西夏墅镇翠屏湖路19号13栋
电话: 0519-85522550
传真: 0519-85522551