天文圆顶安装承诺守信「在线咨询」
牛顿力学的出现,核能的发现等对人类文明起重要作用的事件都和天文研究有密切的联系。当前,对高能天体物理、致密星和宇宙演化的研究,能极大推动现代科学的发展。对太阳和太阳系天体包括地球的研究在航天、测地、通讯导航等部门中都有许多应用。天文起源于古代人类时令的获得和活动。)圆顶在防雷方面有可靠的避雷设计和装置,圆顶接地电阻不大于10欧姆。天文学循着观测-理论-观测的发展途径,不断把人的视野伸展到宇宙的新的深处。随着人类社会的发展,天文学的研究对象从太阳系发展到整个宇宙。现今,天文学按研究方法分类已形成天体测量学、天体力学和天体物理学三大分支学科。按观测手段分类已形成光学天文学、射电天文学和空间天文学几个分支学科。例如,在太阳的核心区域,中微子在核聚变中产生之后,可以毫发无损地穿过太阳外层和地球的大气层,这使得我们可以通过对中微子的检测来研究太阳内部的活动。如果科学家要用超纯水来检测来自深空的中微子,假定槽罐的长度为数十米,那么也许不得不等上数十年才能检测到一颗中微子。因此,要提高检测效率,所需槽罐的长度将不是以米来计量,而是要长达数千米。于是,科学家想到了一个新的创意:利用南极冰原厚达数千米的天然冰层建造中微子探测器。这台探测器被称为“冰立方”中微子探测器,是迄今为止建造的壮观的天文探测器。在这台仪器中,冰起着以往研究中超纯水的作用,它既是靶体,又是观测介质。建造这台仪器的技术并不难。首先,工作人员使用高压热水在南极冰层中钻一些深达2450米的洞,每钻一个洞大约需40小时。然后,研究人员把一条带有连成一串的60个检测器模块的电缆往下放进这个洞里,并给这个洞浇满水,让它重新。当一颗中微子在“冰立方”中触发了与某个原子核的反应的时候,会产生闪光。检测器就把闪光记录下来,地面的计算机根据记录下来的数据,可以重新构建出每一颗中微子的特性,并确定它们的能量及其来向。然而,当研究人员把串检测器往下放到冰中以后,它们完全没有起作用。原来,在闪光到达检测器之前,留在冰中的微小气泡散射了这些光线。幸好,科学家们发现,在深度超过1400米时,冰的压力高得使气泡消失,研究人员所需要的清晰信号就出现了。因此,在接下来的实验中,检测器串就降到了1450米以下。1900年,一座带有标志性圆顶的天文台正式建成,名为佘山天文台。“冰立方”中的闪光大都不是来自深空的中微子产生,因为抵达地表的中微子大都来源于地球大气层。来自深空的宇宙线与地球大气中的原子碰撞,会产生很多中微子,它们与来自深空的中微子的比例达到500000∶1。)