景德镇生物质木屑颗粒优选企业,东锋颗粒供货商
利用生物质致密成型设备(shèbèi)(颗粒机、秸秆压块机、饲料颗粒机等),充分利用农林废弃物如稻壳、木屑、秸秆等生产(Produce)生物质颗粒燃料(fuel),具有较好的经济效益和社会效益。在生物质颗粒产品中,稻壳颗粒是一种新兴产品。与其它种类的生物质颗粒产品相比,稻壳颗粒的原料来源更广泛,价格更低廉,成型效果更好,生产过程更简单,具有很好的经济、生态和社会效益。本文报道了通过电子扫描显微镜对稻壳生物质颗粒进行显微观察结果,从中分析其成型机理,为改进生产工艺、提高产品质量(Quality)提供理论依据。1、试验材料(Material)和方法1.1试验材料及仪器试材:稻壳生物质颗粒,圆柱状,尺寸为:长80mM、直径8mm。生物质能源颗粒生物质颗粒燃料不含硫磷,燃烧时不产生和,因而不会导致酸雨产生,不污染大气,不污染环境。生物质能源颗粒生物质颗粒燃料技术更容易实现大规模生产和使用。使用生物能源颗粒的方便程度可与燃气、燃油等能源媲美。仪器:Quanta200型扫描电子显微镜(美国FEI公司)。木质素就能够开始软化,具有一定的粘度。在200~300℃呈熔融状,粘度高。2.2稻壳颗粒物理结合分析从物理结合方面来分析。微观上,由于原料水稻壳的外表面覆盖着一层硅质,这层硅质具有很高的硬度,特殊的排列方式方法和立体空间结构。从而使得在压缩成型过程中,两片水稻壳相接触时,很难紧密靠近形成分子间的作用力,而且由于硅及其无机化合物是不具有极性的稳定物质,所以水稻壳之问也就不具有静电(是一种处于静止状态的电荷)吸附力。因此,水稻壳之间的结合程度就不如锯木屑那样紧密。宏观上,由于本研究采用的水稻壳在脱粒后未经过粉碎,还保持着水稻壳的原有形态,它的直径较大,一般在4~7mm之间,而且呈片状;它很难形成木质原料之间那样的紧密填充结合。从图2中可以看出,水稻壳生物质颗粒中的水稻壳原料之间,片与片错落有致的层叠在一起。从图3中可以观察出水稻壳原料之间明显的分层现象。这表明在水稻壳原料的压缩成型过程中,原料之间产生的主要是;搭桥;;桥接;结合,英文称为Solidbridge。它的形成方式是,体积较大或有一定长度的原料物质之间互相搭头,并层层叠搭。本研究中采用的水稻壳原料呈片状,因此我们将它的这种结合称为;片搭;或;叠片;。由于较硬的硅质层的存在,使得水稻壳的塑性极差,在压缩过程中很难发生变形来实现原料之间的紧密接触,原料之间存在较大空隙,因此在;片搭;的结合方式下(见图4),原料之间的摩擦力有限;机械阻力方面,也只有垂直于水稻壳方向的剪切、弯曲阻力较好,而平行于水稻壳的机械阻力就比较差。与木质生物质颗粒相比较,水稻壳颗粒很容易出现断层现象,颗粒产品容易折断。此外水稻壳属于硬质短纤维生物质材料(Material),与木材相比纤维长度较短;在压缩成型过程中,不会出现木质原料那样的纤维缠绕式的结合。生物质颗粒是通过专门设备将秸秆(简介:成熟农作物茎叶)、稻壳、木屑等农业废弃物压缩成特定形状来增加其密度(单位:g/cm3或kg/m3)的固体燃料(fuel),具有、洁净、点火容易、CO2零排放等优点,可替代(用一物质代替另一物质(多为强者取代弱者的地位))煤炭(coal)等化石燃料应用于炊事、供暖等民用领域和锅炉燃烧、发电等工业领域。生物质颗粒在常温条件下利用压辊和环模对粉碎后的生物质秸秆、林业废弃物等原料进行冷态致密成型加工,民用取暖和生活用能,干净、无污染,便于贮存、运输。对于固体生物质燃料(fuel)燃烧后的颗粒物排放问题(Emerson),国内外都做了一些研究,国外主要集中在木质成型燃料方面,研究了木质成型燃料的颗粒物分布状况,国内主要集中在生物质原始(Original)状态下燃烧后颗粒物排放总量方面,主要研究了水稻、小麦、玉米秸秆等生物质直接燃烧生成颗粒物状况,但对生物质颗粒厂家中的颗粒物质量和数量的浓度分布等尚未研究。跟欧美的木质生物质成型燃料相比,中国的生物质成型燃料主要以玉米秸秆、棉杆、水稻、小麦等农作物生产(Produce)剩余物为主,在工业成分、燃烧特性、排放的方面都和木质颗粒燃料有一定差异。)