南京硬质合金刀具制造在线咨询,昂迈工具在线咨询
俗话说“工欲善其事必先利其器”,这个道理从古至今都被很好地延续并传扬着,然而在机床行业,刀具似乎并不是越“快”越好,很多在初接触到机床刀具的时候,都有着一个疑问“为何好好的刀具要进行钝化处理呢?”今天就让我们一起来了解一下关于“刀具钝化”的那些事儿。其实,刀具钝化并不是大家字面理解的意思,而是一种有效提高刀具使用寿命的手段。通过平整、抛光、去毛刺等工序达到提高刀具质量的目的。这其实是刀具在精磨之后,涂层之前的一道正常工序。一般来说,刀具钝化抛光的方式分为毛刷、喷砂、拖拽式抛光机,这其中又属毛刷与拖拽式的应用为广泛。从事金属切削行业的人都知道,刀具在成品前会经过砂轮刃磨,但是刃磨加工会造成不同程度的微观缺口。这就导致数控机床在进行高速切削的同时微观缺口会极易扩展,从而加快刀具的磨损和损坏。现代的切削技术中对刀具的稳定性和精密性都有了严格要求,因此数控刀具在涂层前必须经过刀口的钝化处理,才能保证涂层的牢固性和使用寿命。刀具钝化的优势与目的1.抵抗刀具物理磨损在切削过程中刀具表面会被工件逐渐耗损,切削过程中切削刃在高温高压下也易发生塑性变形。刀具的钝化处理可以帮助刀具提高刚性,避免刀具过早丧失切削性能。2.保持工件的光洁度刀具刃口有毛刺会导致刀具磨损,加工工件的表面也会变得粗糙。经钝化处理后,刀具的刃口会变得很光滑,崩刃现象也会相应减少,工件表面光洁度也会提高。3.方便凹槽排屑对刀具凹槽抛光处理可以提高表面质量和排屑性能,凹槽表面越平整光滑,排屑就越好,就可实现更连贯的的切削加工。数控机床的刀具在经过钝化抛光后,表面会留下许多小孔,在加工时这些小孔可以吸附更多的切削液,使得切削时产生的热量大大减少,极大得提高切削加工的速度。综上所述,刀片刃口钝化十分重要,正如我国古人所说“千里之堤,溃于蚁穴”,刀片刃口微观缺口这个“蚁穴”虽小,却影响刀具性能和寿命这个“千里之提”,是不可小视的大问题。刀片刃口钝化技术是提高刀具寿命减少刀具消耗的有效措施之一。无论在经济和技术两个方面都是可行的、有效的,进一步推动我国切削加工水平的提高,缩小与国外刀具切削性能的差距。刀具涂层技术刀具涂层技术,为你的运用技术加冕切削刀具表面涂层技术是近几十年应市场需求展开起来的材料表面改性技术。选用涂层技术可有用前进切削刀具运用寿数,使刀具获得尤秀的归纳机械功用,然后大幅度前进机械加工功率。涂层的效果1、前进硬质合金的耐磨性功用;2、前进抗痒化功用;3、减小抵触;4、前进抗金属疲劳功用;5、添加抗热冲击性。涂层的特色1、力学和切削功用好。涂层刀具将基体材料和涂层材料的尤秀功用结合起来,既坚持了基体出色的耐性和较高的强度,又具有涂层的高硬度、高耐磨性和低抵触系数。因而,涂层刀具的切削速度与未涂层的比较,切削速度可前进2~5倍,运用涂层刀具可以获得明显的经济效益。2、通用性强。涂层刀具通用性广,加工规模明显扩展,一种涂层刀具可以代替数种非涂层刀具运用,因而可以大大减少刀具的种类和库存量,简化刀具处理,下降刀具和设备本钱。涂层的分类依据涂层方法不同,涂层刀具可分为化学气相堆积,涂层刀具、物***相堆积,涂层刀具及混合工艺及组合技术。CVD涂层原理如图a所示,PVD涂层原理如图b所示。混合工艺是等离子辅助CVD技术与传统的PVD技术进行有用的结合。比方先堆积传统的CrN硬质涂层,再在上面堆积一层用于减少抵触的DLC涂层。组合技术是涂层前对东西或零部件的表面层进行氮化,可以前进涂层的成效。CVD涂层,堆积温度在1000℃左右,可以涂覆耐磨损性优异的TiCN、耐热性非常优异的Al2O3厚膜,因而在发生高温的高速、高功率切削加工中能显示出长寿数,CVD涂层如图a所示。PVD涂层,堆积温度在500℃左右,一般用在与无涂层硬质合金、高速钢相同或较高速的切削速度条件下,以延伸刀具寿数为政策。对基体限制少、损害小,因而特别合适用于要求耐磨损性、耐崩刃性的刀具,也适用于要求尖锐刃口的低进给加工与精加工或螺纹加工东西等,PVD涂层如图b所示。金刚石涂层选用CVD(化学蒸镀法)在硬质合金基体上组成。组成的涂层具有与天然金刚石相匹敌的硬度与导热系数,在非铁材料的加工中发挥着优异的功用。金刚石涂层刀具因为其出色的切削功用,在切削加工范畴具有宽广的运用前景,是加工石墨、金属基复合材料、高硅吕合金及许多其他耐磨蚀材料的志向刀具,目前其主要运用范畴是轿车和航空航天工业。金刚石涂层刀具的安排如下图所示。金刚石涂层刀具安排依据涂层材料的性质,涂层刀具又可分为两大类,即“硬”涂层刀具和“软”涂层刀具。“硬”涂层刀具寻求的主要政策是高的硬度和耐磨性,其主要长处是硬度高、耐磨性好,典型的是TiC和TiN涂层。“软”涂层刀具是选用固体润滑剂如MoS2、WS2等制备的刀具,“软”涂层寻求的政策是低抵触系数,也称为自润滑刀具,它与工件材料的抵触系数很低,只要0.1左右,可减小粘、减轻抵触、下降切削力和切削温度。涂层的结构经过多年的展开,涂层的结构已经发生了许多改动,有了很大的改进。在涂层技术中,通常有以下五种不同的结构:1、单层结构望文生义,这种结构只要一层涂层。当我们在显微镜下观察这种结构时,可以看见一些长柱形涂层结构。这种涂层很简单涂覆,但也很简单发生裂纹和破损。想象一下,当一个球击中一束柱体时,这些柱体就会开始倒下,而裂纹简单就能贯穿涂层,抵达基体。2、多层结构多层结构是由许多不同的单层结构互相堆叠在一起构成的。表面花纹钢就是历使上此类结构的一个比如。多层结构涂层可将几种涂层材料的特性结合在一起,形成耐性与硬度俱佳的表面。3、纳米多层结构纳米多层结构与多层结构本质上相同,但其层厚却要薄得多:涂层厚度仅为原子级水平。4、纳米复合涂层结构纳米复合涂层选用了与硬质合金刀具相似的技术。这种纳米结构将粘结相(例如硬质合金中的钴)的耐性与纳米复合涂层的硬度结合在一起。5、梯度结构该结构的涂层功用具有渐变性:涂层中心部分较软而赋有弹性,而在接近表层时则变得坚固而耐磨。涂层的选用为了更好地挑选和展开刀具及零部件的蕞佳成效,需求区分其主要及特定的磨损性和失效机理。磨损、粘附、腐蚀和疲劳都视为磨损机理,而且都取决于实践的运用。经历指出,材料的抵触和磨损都不是材料的原因,而是整个体系的原因。因而,在挑选涂层前就必须剖析整个抵触体系,包含零部件的技术功用、抗压力规模以及磨损机理的类型。硬质合金涂层的运用举例1、切削东西:钻头、刀片等。2、耐磨东西,包含各种金属模具、冲头、轧辊、切开刀具等涂层展开前景其时切削工业依然面临着各种问题,其间用户要求越来越高以及要切削的材料特性这两方面问题尤为杰出。来历:《硬质合金刀具涂层的现状及展开方向》涂层是处理这些新难题的有用手段,涂层对硬质合金寿数的影响程度远超过基体本身对寿数的影响程度,涂层技术的展开方向将是:1、下降涂层工艺温度2、增强模基结合力3、研发更强韧的涂层材料4、更加简单易控的涂层工艺装备一、钻孔与扩孔1.钻孔钻孔是在实心资料上加工孔的地一道工序,钻孔直径一般小于80mm。钻孔加工有两种办法:一种是钻头旋转;另一种是工件旋转。上述两种钻孔办法发作的差错是不相同的,在钻头旋转的钻孔办法中,因为切削刃不对称和钻头刚性不足而使钻头引偏时,被加工孔的中心线会发作偏斜或不直,但孔径根本不变;而在工件旋转的钻孔办法中则相反,钻头引偏会引起孔径改变,而孔中心线仍然是直的。常用的钻孔刀具有:麻花钻、中心钻、深孔钻等,其中常用的是麻花钻,其直径规格为Φ0.1-80mm。因为构造上的约束,钻头的曲折刚度和扭转刚度均较低,加之定心性不好,钻孔加工的精度较低,一般只能到达IT13~IT11;外表粗糙度也较大,Ra一般为50~12.5μm;但钻孔的金属切除率大,切削功率高。钻孔首要用于加工质量要求不高的孔,例如螺栓孔、螺纹底孔、油孔等。对于加工精度和外表质量要求较高的孔,则应在后续加工中经过扩孔、铰孔、镗孔或磨孔来到达。2.扩孔扩孔是用扩孔钻对已经钻出、铸出或锻出的孔作进一步加工,以扩大孔径并进步孔的加工质量,扩孔加工既能够作为精加工孔前的预加工,也能够作为要求不高的孔的终究加工。扩孔钻与麻花钻类似,但刀齿数较多,没有横刃。与钻孔比较,扩孔具有下列特色:(1)扩孔钻齿数多(3~8个齿)、导向性好,切削比较稳定;(2)扩孔钻没有横刃,切削条件好;(3)加工余量较小,容屑槽能够做得浅些,钻芯能够做得粗些,刀体强度和刚性较好。扩孔加工的精度一般为IT11~IT10级,外表粗糙度Ra为12.5~6.3μm。扩孔常用于加工直径小于的孔。在钻直径较大的孔时(D≥30mm),常先用小钻头(直径为孔径的0.5~0.7倍)预钻孔,然后再用相应尺度的扩孔钻扩孔,这样能够进步孔的加工质量和出产功率。扩孔除了能够加工圆柱孔之外,还能够用各种特殊形状的扩孔钻(亦称锪钻)来加工各种沉头座孔和锪平端面示。锪钻的前端常带有导向柱,用已加工孔导向。二、铰孔铰孔是孔的精加工办法之一,在出产中运用很广。对于较小的孔,相对于内圆磨削及精镗而言,铰孔是一种较为经济实用的加工办法。1.铰刀铰刀一般分为手用铰刀及机用铰刀两种。手用铰刀柄部为直柄,作业部分较长,导向作用较好,手用铰刀有整体式和外径可调整式两种结构。机用铰刀有带柄的和套式的两种结构。铰刀不仅可加工圆形孔,也可用锥度铰刀加工锥孔。2.铰孔工艺及其运用铰孔余量对铰孔质量的影响很大,余量太大,铰刀的负荷大,切削刃很快被磨钝,不易取得光洁的加工外表,尺度公役也不易确保;余量太小,不能去掉上工序留下的刀痕,天然也就没有改进孔加工质量的作用。一般粗铰余量取为0.35~0.15mm,精铰取为01.5~0.05mm。为防止发作积屑瘤,铰孔一般选用较低的切削速度(高速钢铰刀加工钢和铸铁时,v<8m/min)进行加工。进给量的取值与被加工孔径有关,孔径越大,进给量取值越大,高速钢铰刀加工钢和铸铁时进给量常取为0.3~1mm/r。铰孔时必须用恰当的切削液进行冷却、光滑和清洗,以防止发作积屑瘤并及时铲除切屑。与磨孔和镗孔比较,铰孔出产率高,容易确保孔的精度;但铰孔不能校对孔轴线的方位差错,孔的方位精度应由前工序确保。铰孔不宜加工阶梯孔和盲孔。铰孔尺度精度一般为IT9~IT7级,外表粗糙度Ra一般为3.2~0.8μm。对于中等尺度、精度要求较高的孔(例如IT7级精度孔),钻—扩—铰工艺是出产中常用的典型加工计划。三、镗孔镗孔是在预制孔上用切削刀具使之扩大的一种加工办法,镗孔作业既能够在镗床上进行,也能够在车床上进行。1.镗孔办法镗孔有三种不同的加工办法。(1)工件旋转,刀具作进给运动在车床上镗孔大都属于这种镗孔办法。工艺特色是:加工后孔的轴心线与工件的反转轴线一致,孔的圆度首要取决于机床主轴的反转精度,孔的轴向几许形状差错首要取决于刀具进给方向相对于工件反转轴线的方位精度。这种镗孔办法适于加工与外圆外表有同轴度要求的孔。(2)刀具旋转,工件作进给运动镗床主轴带动镗刀旋转,作业台带动工件作进给运动。(3)刀具旋转并作进给运动选用这种镗孔办法镗孔,镗杆的悬伸长度是改变的,镗杆的受力变形也是改变的,靠近主轴箱处的孔径大,远离主轴箱处的孔径小,构成锥孔。此外,镗杆悬伸长度增大,主轴因自重引起的曲折变形也增大,被加工孔轴线将发作相应的曲折。这种镗孔办法只适于加工较短的孔。2.金刚镗与一般镗孔比较,金刚镗的特色是背吃刀量小,进给量小,切削速度高,它能够取得很高的加工精度(IT7~IT6)和很光洁的外表(Ra为0.4~0.05μm)。金刚镗初用金刚石镗刀加工,现在普遍选用硬质合金、CBN和人造金刚石刀具加工。首要用于加工有色金属工件,也可用于加工铸铁件和钢件。金刚镗常用的切削用量为:背吃刀量预镗为0.2~0.6mm,终镗为0.1mm;进给量为0.01~0.14mm/r;切削速度加工铸铁时为100~250m/min,加工钢时为150~300m/min,加工有色金属时为300~2000m/min。为了确保金刚镗能到达较高的加工精度和外表质量,所用机床(金刚镗床)须具有较高的几许精度和刚度,机床主轴支承常用精细的角触摸球轴承或静压滑动轴承,高速旋转零件须经经确平衡;此外,进给机构的运动必须十分平稳,确保作业台能做平稳低速进给运动。金刚镗的加工质量好,出产功率高,在大批大量出产中被广泛用于精细孔的终究加工,如发动机气缸孔、活塞销孔、机床主轴箱上的主轴孔等。但须引起留意的是:用金刚镗加工黑色金属制品时,只能运用硬质合金和CBN制造的镗刀,不能运用金刚石制造的镗刀,因金刚石中的碳原子与铁族元素的亲和力大,刀具寿数低。3.镗刀镗刀可分为单刃镗刀和双刃镗刀。刀具经过砂轮刃磨后,刃口会存在不同程度的微观缺陷,在切削过程中,刀具刃口微观缺口极易扩展,加快刀具的磨损和损坏。刃口钝化是延常刀具寿命的金属切削配套技术,能有效减少或消除刃磨后的刀具刃口微观缺陷,以达到圆滑平整,提高刀具抗冲击性能,使刀具刃口锋利坚固。刃口钝化方式可分为传统刃口钝化和特种刃口钝化。传统刃口钝化方式主要包括磨削钝化、毛刷钝化、拖曳钝化和喷砂钝化等;特种刃口钝化方式主要包括激光钝化、电火花电蚀钝化、电化学钝化和磨料水射流钝化等。喷砂是以压缩空气为动力,以形成高速喷射束将喷料高速喷射到需要处理的工件表面,实现对工件表面的加工。由于磨料对工件表面的冲击和切削作用,工件的表面性能和形状会发生改变。而微喷砂技术是以传统喷砂技术为基础,采用微米级尺寸的磨料颗粒来进行待加工表面处理的技术,广泛应用于材料的表面处理,包括表面清洁、表面钝化和表面形貌处理。微喷砂处理的材料去除机理,包括裂纹扩展导致的脆性去除和磨料微切削产生的塑性去除。微喷砂技术在刀具领域主要应用在表面处理方面,如涂层刀具。通过对刀具基体表面进行相应的微喷砂处理,来改变基体的表面形貌,以增加涂层与刀具基体之间的粘结力,提高刀具的切削寿命。研究表明,对刀具的涂层表面进行微喷砂处理可以增加涂层硬度,提高刀具切削寿命。微喷砂技术在刀具刃口钝化领域没有得到广泛应用,理论研究还不充分。本文通过微喷砂技术对硬质合金刀片YT15进行刃口钝化,研究微喷砂工艺参数对刃口半径的影响以及微喷砂处理对刃口质量的影响,并分析微喷砂处理的材料去除机理。1试验步骤试验以喷砂压力P、磨料比重W和喷砂时间T为因素,其中磨料比重W为磨料占水和磨料总质量的比重。每个因素设4个水平,进行64组全因素刃口钝化试验,因素水平见表1。表1微喷砂全因素试验因素水平采用湿式手动喷砂机,喷砂角度45°,喷砂距离8mm。磨料为320目白刚玉,微喷砂加工如图1所示。选用可转位硬质合金刀片YT15,其尺寸标准为SNMN120404,相应的材料性能见表2。通过激光共聚焦显微镜(L***,KeyenceVK-X200K)对微喷砂处理后的刀片刃口进行观测,试验观测指标为刀片刃口半径r和刃口线粗糙度Ra,终结果为三次测量后的平均值。同时对其刃口形貌进行扫描电子显微镜镜(SEM)观察,分析刃口材料去除机理。图1硬质合金刀具YT15微喷砂加工示意图表2硬质合金刀具YT15物理力学性能2试验结果与分析(1)微喷砂工艺参数对刃口半径的影响图2为硬质合金刀具YT15刃口半径随微喷砂各工艺参数的变化趋势。图2a、图2b、图2c和图2d分别是在喷砂时间为20s、30s、40s和50s时刃口半径随喷砂压力的变化图。对比发现,在相同的喷砂压力和磨料比重下,随喷砂时间的增加,刀具刃口半径增大,这实质上是材料去除随着时间累积的结果。在相同的喷砂时间和磨料比重下,随喷砂压力的增加,刀具刃口半径增大。这是因为随着喷砂压强的增加,磨料流的出口速度增加,单颗粒磨料速度也相应增加。硬质合金可看作是硬脆材料,根据单颗粒磨料冲蚀模型可知,单颗粒磨料的材料去除量与磨料颗粒的速度的指数成正比,使得单颗粒磨料的材料去除量增加。同时磨料流速度的增加,使单位时间内有效冲击刀具刃口的磨料颗粒数量增加,刃口材料的去除量变大。因此,增加喷砂压力相当于既增加磨料比重又增加喷砂时间,两者的共同作用使刃口半径增大。由图2分析磨料比重对刀具刃口半径的影响可知,在喷砂压力为0.2MPa和0.25MPa时,随着磨料比重的增加,刀具的刃口半径先增大而后减小;而在喷砂压力为0.3MPa和0.35MPa时,随着磨料比重的增加,刀具的刃口半径呈现一直增大的趋势。同理,根据单颗粒磨料冲蚀模型分析可知,当喷砂压力较小时,随着磨料比重的增加,虽然单颗粒磨料速度减小,但是单位体积内磨料颗粒的数量增加,造成单位时间内磨料颗粒对刀具刃口的冲击次数增加,所以刃口材料的去除量变大。当磨料比重过大时,根据能量守恒可知,磨料流的速度减小很多,其中磨料颗粒的速度大幅降低,不仅减少了单颗粒磨料材料的去除量,也使单位时间内磨料对刀具刃口的冲击次数减少,进一步减少材料去除量,使得刃口半径随着磨料比重的增加先增大后减小。当喷砂压力较大时,随着磨料比重的增加,在单位时间内增加的磨料对刀具刃口的冲击次数所增加的材料去除量要多于单颗粒磨料速度降低而减少的材料去除量。总的来说,单位时间内材料去除量增加,因此在较大喷砂压力下,刀具的刃口半径随着磨料比重的增加而增加。(a)T=20s(b)T=30s(c)T=40s(d)T=50s图2刃口半径随微喷砂各工艺参数的变化趋势(2)微喷砂处理对刃口线粗糙度的影响图3是硬质合金刀片YT15经过微喷砂刃口钝化处理前后的切削刃形貌。采用微喷砂工艺参数:喷砂压力P=0.2MPa,磨料比重W=0.1,喷砂时间T=30s。通过测量得到切削刃的相关参数见表3。图3未处理刀片与微喷砂刃口钝化刀片的切削刃形貌可以发现,硬质合金刀片YT15的刃口轮廓由原来的r=6μm锐刃变成r=27μm的圆弧刃口。其切削刃形貌得到改善,刃口线粗糙度Ra由原来的0.79μm下降到0.5μm,Ry则由原来的6μm下降到3μm。这是由于微喷砂处理消除了刀具刃磨时产生的微观缺陷,改善了刃口质量。表3未处理刀片与微喷砂刃口钝化刀片刃口参数对比(μm)图4是微喷砂全因素试验时硬质合金刀片YT15的刃口线粗糙度的分布情况。可以得出,硬质合金YT15刀片的刃口线粗糙度为0.3-0.8μm,满足刀片的刃口粗糙度要求。图4硬质合金刀具YT15刃口线粗糙度分布(3)微喷砂刃口材料去除机理研究刀片的微喷砂过程实质上是高速磨料射流冲击材料表面,实现材料的去除。其材料去除机理主要归结为磨料颗粒对材料的去除方式。对于脆性材料,其去除机理往往不只有脆性去除,还包括磨料颗粒的微剪切引起的塑性去除。图5是硬质合金刀具YT15在喷砂压力P=0.25MPa、磨料目数M=320、喷砂时间T=20s和磨料比重W=0.1时的刃口形貌。可以看出,经过微喷砂处理后,刀具出现了圆弧刃口,对其圆弧刃口的区域A进行放大,可以观察刃口材料去除形成的微观形貌。通过区域B可以看出,其硬质合金中硬质相的去除多为由裂纹扩展造成的脆性断裂,这是由于棱角尖锐的磨料颗粒对于硬质相的冲击作用,使之产生径向裂纹和侧向裂纹,由于磨料颗粒的高频率冲击,进而造成侧向裂纹的扩张形成网状裂纹,达到材料的去除。对于C区域的观察,也可以发现刃口材料上存在磨料颗粒的刻划痕迹,这主要是由于具有锋利刃口的白刚玉磨料颗粒对工件材料的微切削作用导致。由于刀具材料中除硬质相成分外,还包括粘结相,其微切削作用相对于粘结相更为明显,粘结相材料先于硬质相去除,使得硬质相成分显露出来。因此微喷砂处理硬质合金刀具YT15的材料去除机理,包括由磨料冲击和水楔作用引起裂纹扩展而导致硬质相材料的脆性去除,还包括磨料颗粒的微切削作用引起的材料塑性去除。图5硬质合金刀具YT15微喷砂刃口形貌SEM图小结微喷砂处理可以对硬质合金刀具YT15刃口进行有效钝化,形成一定圆弧半径的刀具刃口。研究表明,刃口圆弧半径随着微喷砂时间和喷砂压力的增加而增大。对于磨料比重而言,在喷砂压力为0.2MPa和0.25MPa时,随着磨料比重的增加,刀具刃口半径先增大而后减小;在喷砂压力为0.3MPa和0.35MPa时,随着磨料比重的增加,刀具刃口半径呈现一直增大的趋势。微喷砂处理可有效改善硬质合金刀具YT15的刃口质量,消除微观缺陷,降低刃口线粗糙度,在结构上对刀具刃口进行钝化。硬质合金刀具YT15刃口材料的去除机理,包含由裂纹扩展而导致硬质相材料的脆性去除和微切削作用引起的材料塑性去除。)