
烘干箱鼓风机 粮食烘干鼓风机厂商 冠熙风机
对鼓风机的结构和工作原理是一种具有对旋结构的轴流风机。两级叶轮直接与两台电机连接,两级叶轮作为导叶反向旋转,形成一个反向旋转结构。本文的研究对象是FBDNO8.0对旋轴流风机,主要用于煤矿巷道的强制通风。两级叶轮额定转速2900r/min,一级叶轮14片,二级叶轮10片,叶轮外径800mm,轮毂比0.60,鼓风机的两级叶轮安装角度分别为46度和30度。工作压力8000pa,较大流量950m3/min,对旋风机结构如图1所示。两级叶轮以相反的速度高速旋转,在风机前部形成较大的负压,使风机外的空气能够流入风中。入口集尘器的作用是保证风管内气流均匀、畅通,有效提高风机运行效率,降低风机噪声。在个叶轮的旋转作用下,鼓风机气流的动能和压力势能增加,并迅速流向第二个叶轮,第二个叶轮可以加速,以获得更高的能量。气流高速稳定地通过扩散器流出风道。风机的整流罩和扩压器分别起到优化进出风流场的作用,以减小气动力对结构的影响。进出口分别设置两层筒形消声器,其主要功能是消除空气动力噪声。与单级轴流风机相比,对旋式局部风机具有结构紧凑、风压高、流量大、等特点,广泛应用于矿井长距离掘进工作面通风。从鼓风机的一般参数出发,通过一维径向参数和子午向径向参数的设计,得到了初步设计方案的性能预测和几何参数。初步方案利用现有的标准叶片型线对三维叶片进行几何建模,通过求解三维稳定流场对初步设计方案进行验证。一维参数设计主要是求解平均半径气动参数的控制方程。采用逐级叠加法对多级压缩系统进行了气动计算。同时调整了鼓风机相应的攻角、滞后角和损失模型。后,得到了平均半径和子午线流型下的基本气动参数。计算中使用的损失和气流角模型需要大量的叶栅试验作为支撑。现有的实验改进模型包括经典亚音速叶片型线NACA65、***和BC10,基本满足了风机的初步设计要求。为了准确、快速地得到初步设计方案,将现有的经典叶片型线直接用于一维设计和初步设计。当设计负荷超过原模型时,采用MISES方法对S1流面进口断面进行分析,得到初始滞后角,如本文对高负荷风机的设计。在S2流面设计中,鼓风机采用流线曲率法对S2流面进行了流量计算。为了简化计算过程,将计算假设为无粘性和恒定绝热,忽略了实际涡轮机械中的三维、非定常和粘性流动特性,引入了叶排损失来表示叶栅中流体粘度的影响。通过三维流场的数值分析,修正了求解S2流面过程中的损失,并通过迭代得到了初步设计方案。本文以方案中鼓风机的定子叶片为例进行了详细设计,优化了S1流面叶型,鼓风机采用三维叶片技术改善了定子叶栅内的流动。通过三维数值模拟,对S2流面设计中的损失和滞后角模型进行了标定,为叶片三维建模提供了依据。通过与初步三维设计结果的比较,两种设计方案的气动参数径向分布一致,证实了鼓风机设计过程中S2流面设计的准确性和可靠性。由于叶尖泄漏流的存在,叶尖压力比与气流角(图中***虚拟线圈所示的面积)之间存在一定的偏差,但通过三维CFD的修正,s2的设计趋势预测了叶尖泄漏流对气动参数径向分布的影响;bec在高负荷下,定子根部出现了气流分离现象,导致了出口气流角和S2设置的初步三维设计。预测结果略有不同(图中橙色虚线圈所示的区域)。鼓风机利用一条非均匀有理B-sline曲线来描述由四个控制点(红点)控制的曲线,包括前缘点和后缘点。叶片体由四条非均匀曲面、两个吸力面和两个压力面组成,同时与较大切圆(灰圆)和前缘后缘椭圆弧相切。利用MITMISES程序对S1型拖缆叶片进行了流场分析。采用B-L(Baldwin-Lomax)湍流模型和AGS(Abu-Ghamman-Shaw)旁路过渡模型描述了过渡过程。)