机器人步进电机***信赖推荐,铭锐昂
步进电机是将电脉冲信号转变为角位移或线位移的开环控制电机,是现代数字程序控制系统中的主要执行元件,应用极为广泛。。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度,称为“步距角”,它的旋转是以固定的角度一步一步运行的。可以通过控制脉冲个数来控制角位移量,从而达到准确***的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。国内外的科技工作者对步进电机的速度控制技术进行了大量的研究,建立了多种加减速控制数学模型,如指数模型、线性模型等,并在此基础上设计开发了多种控制电路,改善了步进电机的运动特性,推广了步进电机的应用范围指数加减速考虑了步进电机固有的矩频特性,既能保证步进电机在运动中不失步,又充分发挥了电机的固有特性,缩短了升降速时间,但因电机负载的变化,很难实现而线性加减速仅考虑电机在负载能力范围的角速度与脉冲成正比这一关系,不因电源电压、负载环境的波动而变化的特性,这种升速方法的加速度是恒定的,其缺点是未充分考虑步进电机输出力矩随速度变化的特性,步进电机在高速时会发生失步。文献将闭环反馈控制与自适应控制结合来检测转子的位置和速度,通过反馈和自适应处理,按照优化的升降运行曲线,自动地发出驱动的脉冲串,提高了电机的拖动力矩特性,同时使电机获得更精1确的位置控制和较高较平稳的转速。[2]目前,很多学者将自适应控制与其他控制方法相结合,以解决单纯自适应控制的不足。文献设计的鲁棒自适应低速伺服控制器,确保了转动脉矩的1大化补偿及伺服系统低速的跟踪控制性能。文献实现的自适应模糊PID控制器可以根据输入误差和误差变化率的变化,通过模糊推理在线调整PID参数,实现对步进电机的自适应控制,从而有效地提高系统的响应时间、计算精度和抗干扰性。)