硬质合金刀具优点厂家实力雄厚“本信息长期有效”
1.概述通常,人们把含铬量>12%或含镍量>8%的合金钢称为不锈钢。这种钢在大气中或在腐蚀性介质中具有一定的耐腐蚀能力,并在较高温度(>450℃)下具有较高的强度。含铬量达16%~18%的钢,称为耐酸钢或耐酸不锈钢,通称为不锈钢。含铬量达12%以上的钢在与氧化性介质接触时,由于电化学作用,表面形成一层富铬氧化膜,可保护金属内部不受腐蚀。但在非氧化性腐蚀介质中,不能形成坚固的钝化膜。为提高钢的耐腐蚀能力,通常选择增大铬的比例或添加可促进钝化的合金元素,如添加Ni、Mo、Mn、Cu、Nb、Ti、W和Co等。这些合金元素不仅提高了钢的抗腐蚀能力,同时改变了钢的内部***和物理力学性能。其在钢中的含量不同,对不锈钢性能产生的影响不同,有的有磁性,有的则无磁性,有的能够进行热处理,有的则不能进行热处理。不锈钢被越来越广泛地应用于航空、航天、化工、石油、建筑以及食品机械行业中。其所含的合金元素对切削加工性能影响较大,文中主要对不锈钢的切削加工进行了分析。2.不锈钢的分类及性能(1)按不锈钢主要成分,分为以铬为主的铬不锈钢和以铬、镍为主的铬镍不锈钢两大类。(2)按不锈钢金相***分类:①马氏体不锈钢。其含铬量为12%~18%,含碳量为0.1%~0.5%(有时达1%)。其硬度为170~217HBW,抗拉强度σb为540~1079MPa,伸长率δ为10%~25%,热导率к为25.12W/(m·K)。常见的牌号有1Cr13、2Cr13、3Cr13、4Cr13、1Cr17Ni2、9Cr18、9Cr18MoV和30Cr13Mo等。马氏体不锈钢通过淬火,可获得较高的硬度、强度和耐磨性。然而,当钢中含碳量低于0.3%时,***不均匀,粘附性强,切削时易产生积屑瘤,且断屑困难,切削加工性较差。当含碳量达0.4%~0.5%时,切削加工性较好。②铁素体不锈钢。其含铬量为12%~13%。硬度为177~228HBW,抗拉强度σb为363~451MPa,伸长率δ为20%~22%,热导率к为16.7W/(m·K)。加热冷却时***稳定,不发生相变,所以不能进行热处理强化,只能靠变形强化,切削加工性相对较好。常见的牌号有0Cr13、0Cr17Ti、0Cr13Si4NbRe、1Cr17、1Cr17Ti、1Cr17Mo2Ti、1Cr28以及1Cr25Ti等。③奥氏体不锈钢。其含铬量为12%~25%,含镍量为7%~20%(或20%以上)。硬度为187~207HBW,抗拉强度σb为481~520MPa,伸长率δ为40%,热导率к为16.33W/(m·K)。典型牌号有1Cr18Ni9Ti,其他还有00Cr18Ni10、0Cr18Ni12Mo2Ti、0Cr18Ni18Mo2Cu2Ti、1Cr14Mn14Ni、2Cr13Mn9Ni4以及1Cr18Mn8Ni5N等。由于奥氏体不锈钢含有较多的镍或锰,加热时***不变,故淬火不能使其强化,可通过冷加工硬化来大幅度提高强度和硬度,其硬化程度为基体硬度的1.4~2.2倍,给下一次切削带来很大困难。其具有优良的力学性能和良好的耐腐蚀能力,无磁性。④奥氏体-铁素体双相不锈钢。与奥氏体不锈钢相似,仅在***中含有一定量铁素体,常见牌号有0Cr21Ni5Ti、1Cr21Ni5Ti、1Cr18Mn10Ni5Mo3N、0Cr17Mn13Mo2N、1Cr17Mn9Ni3Mo3Cu2N、Cr26Ni17Mo3CuSiN以及1Cr18Ni11Si4AlTi等。这类不锈钢有硬度极高的金属间化合物析出,强度比奥氏体不锈钢高,切削加工性能比奥氏体不锈钢更差。其硬度<277HBW,抗拉强度σb为589~736MPa,伸长率δ为18%~30%。⑤沉淀硬化不锈钢。这类不锈钢因含有较高的铬、镍和极低的碳,还含有能起沉淀硬化作用的、铝、钛和钼等合金元素,其在回火时析出,产生沉淀硬化,具有很高的硬度和强度。其硬度为363~388HBW,抗拉强度σb为1138~1324MPa,伸长率δ为5%~10%,这类钢具有良好的耐腐蚀性能。常见牌号有0Cr17Ni4Cu4Nb、0Cr17Ni7Al和0Cr15Ni7Mo2Al等。3.不锈钢的切削特点不锈钢的切削加工性能比45钢差。若以45钢的相对切削加工性Kr为1,则奥氏体不锈钢的相对切削加工性Kr为0.4,铁素体不锈钢的Kr为0.48,马氏体不锈钢的Kr为0.55。其中以奥氏体和奥氏体-铁素体双相不锈钢的切削加工性差,给切削加工带来很大困难,其特点如下:(1)切削加工硬化严重。以奥氏体和奥氏体铁素体不锈钢的加工硬化现象为严重,硬化层的硬度比基体硬度高1.4~2.2倍,其抗拉强度σb为1470~1960MPa。这类不锈钢塑性大(δ>35%),塑性变形时晶格扭曲,故强化系数大,且奥氏体不稳定,在切削力作用下,部分奥氏体转变为马氏体。(2)切削力大。不锈钢的高温强度和硬度高且韧性大,故在切削时所消耗的能量大,即切削抗力大。以奥氏体不锈钢为例,在切削过程中温度高达700℃时,其综合力学性能高于一般结构钢。加之其在切削过程中的塑性变形大、硬化现象严重,增大了切削力,所以不锈钢的单位切削力为45钢单位切削力的1.25倍。(3)切削温度高。由于不锈钢在切削时的塑性变形大,切屑与刀具间的摩擦大,加之其热导率仅为45钢热导率的1/3~1/4,散热条件差,大量切削热集中在切削区,在相同切削条件下,切削温度比切削45钢时高200℃。怎样磨好车刀在切削过程中,由于车刀的前刀面和后刀面处于剧烈的冲突和切削热的效果之中,会使车刀切削刃口变钝而失去切削才能,只要经过磨才能***切削刃口的尖利和正确的车刀视点。因此,车工不只要懂得切削原理合理地挑选车刀视点的有关常识,还必须熟练地掌握车刀的刃磨技能。下面就由小编来问大家介绍下车刀刃磨的一些经验吧!老外磨车刀一、车刀的组成车刀由刀头和刀体两部分组成。刀头用于切削,刀体用于装置。刀头一般由三面,两刃、一尖组成。前刀面是切屑流经过的外表。主后刀面是与工件切削外表相对的外表。副后刀面是与工件已加工外表相对的外表。主切削刃是前刀面与主后刀面的交线,背负主要的切削作业。副切削刃是前刀面与副后刀面的交线,背负少数切削作业,起一定修光效果刀尖是主切削刃与副切削刃的相交部分,一般为一小段过渡圆弧。二、车刀的方式结构常用的车刀结构方式有以下两种:(1)全体车刀刀头的切削部分是靠刃磨得到的,全体车刀的资料多用高速钢制成,一般用于低速切削。(2)焊接车刀将硬质合金刀片焊在刀头部位,不同品种的车刀可使用不同形状的刀片。焊接的硬质合金车刀,可用于高速切削。三、车刀的主要视点及效果车刀的主要视点有前角(γ0)、后角(α0)、主偏角(Kr)、副偏角(Kr’)和刃倾角(λs)。为了确定车刀的视点,要建立三个坐标平面:切削平面、基面和主剖面。对车削而言,假如不考虑车刀装置和切削运动的影响,切削平面可以认为是铅垂面;基面是水平面;当主切削刃水平时,垂直于主切削刃所作的剖面为主剖面。(1)前角γ0在主剖面中丈量,是前刀面与基面之间的夹角。其效果是使刀刃尖利,便于切削。但前角不能太大,否则会削弱刀刃的强度,简单磨损乃至崩坏。加工塑性资料时,前角可选大些,如用硬质合金车刀切削钢件可取γ0=10~20,加工脆性资料,车刀的前角γ0应比粗加工大,以利于刀刃尖利,工件的粗糙度小。(2)后角α0在主剖面中丈量,是主后边与切削平面之间的夹角。其效果是减小车削时主后边与工件的冲突,一般取α0=6~12°,粗车时取小值,精车时取大值。(3)主偏角Kr在基面中丈量,它是主切削刃在基面的投影与进给方向的夹角。其效果是:1)可改变主切削刃参与切削的长度,影响刀具寿命。2)影响径向切削力的大小。小的主偏角可增加主切削刃参与切削的长度,因而散热较好,对延伸刀具使用寿命有利。但在加工细长轴时,工件刚度不足,小的主偏角会使刀具效果在工件上的径向力增大,易产生曲折和振动,因此,主偏角应选大些。车刀常用的主偏角有45°、60°、75°、90°等几种,其中45°多。(4)副偏角Kr’在基面中丈量,是副切削刃在基面上的投影与进给反方向的夹角。其主要效果是减小副切削刃与已加工外表之间的冲突,以改善已加工外表的精糙度。在切削深度ap、进给量f、主偏角Kr持平的条件下,减小副偏角Kr’,可减小车削后的残留面积,从而减小外表粗糙度,一般选取Kr′=5~15°。(5)刃倾角入λs在切削平面中丈量,是主切削刃与基面的夹角。其效果主要是控制切屑的流动方向。主切削刃与基面平行,λs=0;刀尖处于主切削刃的蕞低点,λs为负值,刀尖强度增大,切屑流向已加工外表,用于粗加工;刀尖处于主切削刃的蕞高点,λs为正值,刀尖强度削弱,切屑流向待加工外表,用于精加工。车刀刃倾角λs,一般在-5-5°之间选取。四、车刀的刃磨车刀用钝后,必须刃磨,以便***它的合理形状和视点。车刀一般在砂轮机上刃磨。磨高速钢车刀用白色氧化铝砂轮,磨硬质合金车刀用绿色碳化硅砂轮。车刀重磨时,往往依据车刀的磨损状况,磨削有关的刀面即可。车刀刃磨的一般顺序是:磨后刀面→磨副后刀面→磨前刀面→磨刀尖圆弧。车刀刃磨后,还应用油石细磨各个刀面。这样,可有效地进步车刀的使用寿命和减小工件外表的粗糙度。车刀刃磨的过程如下:磨主后刀面,一起磨出主偏角及主后角,如图(a)所示;磨副后刀面,一起磨出副偏角及副后角,如上图(b)所示;磨前面,一起磨出前角,如上图(c)所示;修磨各刀面及刀尖,如上图(d)所示。刃磨车刀的姿势及方法是:人站立在砂轮机的旁边面,以防砂轮碎裂时,碎片飞出伤人;两手握刀的间隔放开,两肘夹紧腰部,以减小磨刀时的颤动;磨主、副后刀面时,车刀要放在砂轮的水平中心,刀尖略向上翘约3°~8°,车刀接触砂轮后应作左右方向水平移动。当车刀离开砂轮时,车刀需向上抬起,以防磨好的刀刃被砂轮碰伤;磨后刀面时,刀杆尾部向左偏过一个主偏角的视点;磨副后刀面时,刀杆尾部向右偏过一个副偏角的视点;修磨刀尖圆弧时,通常以左手握车刀前端为支点,用右手滚动车刀的尾部。刃磨车刀时要注意以下事项:(1)刃磨时,两手握稳车刀,刀杆靠于支架,使受靡面轻贴砂轮。切勿用力过猛,防止挤碎砂轮,形成事端。(2)应将刃磨的车刀在砂轮圆周面上左右移动,使砂轮磨耗均匀,不出沟槽。防止在砂轮两旁边面用力粗磨车刀,以致砂轮受力偏摆,跳动,乃至破碎。(3)刀头磨热时,即应沾水冷却,防止刀头因温升过高而退火软化。磨硬质合金车刀时,刀头不应沾水,防止刀片沾水急冷而产生裂纹。(4)不要站在砂轮的正面刃磨车刀,以防砂轮破碎时使操作者受伤。五、常用的车刀品种和用处车刀按用处可分外圆车刀,端面车刀,堵截刀,镗孔刀,成形车刀和纹车刀等。常用的车刀的品种(a)90°车刀(偏刀)(b)45°车刀(弯头车刀)(c)堵截刀(d)镗孔刀(e)成形车刀(f)螺纹车刀(g)硬质合金不重磨车刀刀具经过砂轮刃磨后,刃口会存在不同程度的微观缺陷,在切削过程中,刀具刃口微观缺口极易扩展,加快刀具的磨损和损坏。刃口钝化是延常刀具寿命的金属切削配套技术,能有效减少或消除刃磨后的刀具刃口微观缺陷,以达到圆滑平整,提高刀具抗冲击性能,使刀具刃口锋利坚固。刃口钝化方式可分为传统刃口钝化和特种刃口钝化。传统刃口钝化方式主要包括磨削钝化、毛刷钝化、拖曳钝化和喷砂钝化等;特种刃口钝化方式主要包括激光钝化、电火花电蚀钝化、电化学钝化和磨料水射流钝化等。喷砂是以压缩空气为动力,以形成高速喷射束将喷料高速喷射到需要处理的工件表面,实现对工件表面的加工。由于磨料对工件表面的冲击和切削作用,工件的表面性能和形状会发生改变。而微喷砂技术是以传统喷砂技术为基础,采用微米级尺寸的磨料颗粒来进行待加工表面处理的技术,广泛应用于材料的表面处理,包括表面清洁、表面钝化和表面形貌处理。微喷砂处理的材料去除机理,包括裂纹扩展导致的脆性去除和磨料微切削产生的塑性去除。微喷砂技术在刀具领域主要应用在表面处理方面,如涂层刀具。通过对刀具基体表面进行相应的微喷砂处理,来改变基体的表面形貌,以增加涂层与刀具基体之间的粘结力,提高刀具的切削寿命。研究表明,对刀具的涂层表面进行微喷砂处理可以增加涂层硬度,提高刀具切削寿命。微喷砂技术在刀具刃口钝化领域没有得到广泛应用,理论研究还不充分。本文通过微喷砂技术对硬质合金刀片YT15进行刃口钝化,研究微喷砂工艺参数对刃口半径的影响以及微喷砂处理对刃口质量的影响,并分析微喷砂处理的材料去除机理。1试验步骤试验以喷砂压力P、磨料比重W和喷砂时间T为因素,其中磨料比重W为磨料占水和磨料总质量的比重。每个因素设4个水平,进行64组全因素刃口钝化试验,因素水平见表1。表1微喷砂全因素试验因素水平采用湿式手动喷砂机,喷砂角度45°,喷砂距离8mm。磨料为320目白刚玉,微喷砂加工如图1所示。选用可转位硬质合金刀片YT15,其尺寸标准为SNMN120404,相应的材料性能见表2。通过激光共聚焦显微镜(L***,KeyenceVK-X200K)对微喷砂处理后的刀片刃口进行观测,试验观测指标为刀片刃口半径r和刃口线粗糙度Ra,终结果为三次测量后的平均值。同时对其刃口形貌进行扫描电子显微镜镜(SEM)观察,分析刃口材料去除机理。图1硬质合金刀具YT15微喷砂加工示意图表2硬质合金刀具YT15物理力学性能2试验结果与分析(1)微喷砂工艺参数对刃口半径的影响图2为硬质合金刀具YT15刃口半径随微喷砂各工艺参数的变化趋势。图2a、图2b、图2c和图2d分别是在喷砂时间为20s、30s、40s和50s时刃口半径随喷砂压力的变化图。对比发现,在相同的喷砂压力和磨料比重下,随喷砂时间的增加,刀具刃口半径增大,这实质上是材料去除随着时间累积的结果。在相同的喷砂时间和磨料比重下,随喷砂压力的增加,刀具刃口半径增大。这是因为随着喷砂压强的增加,磨料流的出口速度增加,单颗粒磨料速度也相应增加。硬质合金可看作是硬脆材料,根据单颗粒磨料冲蚀模型可知,单颗粒磨料的材料去除量与磨料颗粒的速度的指数成正比,使得单颗粒磨料的材料去除量增加。同时磨料流速度的增加,使单位时间内有效冲击刀具刃口的磨料颗粒数量增加,刃口材料的去除量变大。因此,增加喷砂压力相当于既增加磨料比重又增加喷砂时间,两者的共同作用使刃口半径增大。由图2分析磨料比重对刀具刃口半径的影响可知,在喷砂压力为0.2MPa和0.25MPa时,随着磨料比重的增加,刀具的刃口半径先增大而后减小;而在喷砂压力为0.3MPa和0.35MPa时,随着磨料比重的增加,刀具的刃口半径呈现一直增大的趋势。同理,根据单颗粒磨料冲蚀模型分析可知,当喷砂压力较小时,随着磨料比重的增加,虽然单颗粒磨料速度减小,但是单位体积内磨料颗粒的数量增加,造成单位时间内磨料颗粒对刀具刃口的冲击次数增加,所以刃口材料的去除量变大。当磨料比重过大时,根据能量守恒可知,磨料流的速度减小很多,其中磨料颗粒的速度大幅降低,不仅减少了单颗粒磨料材料的去除量,也使单位时间内磨料对刀具刃口的冲击次数减少,进一步减少材料去除量,使得刃口半径随着磨料比重的增加先增大后减小。当喷砂压力较大时,随着磨料比重的增加,在单位时间内增加的磨料对刀具刃口的冲击次数所增加的材料去除量要多于单颗粒磨料速度降低而减少的材料去除量。总的来说,单位时间内材料去除量增加,因此在较大喷砂压力下,刀具的刃口半径随着磨料比重的增加而增加。(a)T=20s(b)T=30s(c)T=40s(d)T=50s图2刃口半径随微喷砂各工艺参数的变化趋势(2)微喷砂处理对刃口线粗糙度的影响图3是硬质合金刀片YT15经过微喷砂刃口钝化处理前后的切削刃形貌。采用微喷砂工艺参数:喷砂压力P=0.2MPa,磨料比重W=0.1,喷砂时间T=30s。通过测量得到切削刃的相关参数见表3。图3未处理刀片与微喷砂刃口钝化刀片的切削刃形貌可以发现,硬质合金刀片YT15的刃口轮廓由原来的r=6μm锐刃变成r=27μm的圆弧刃口。其切削刃形貌得到改善,刃口线粗糙度Ra由原来的0.79μm下降到0.5μm,Ry则由原来的6μm下降到3μm。这是由于微喷砂处理消除了刀具刃磨时产生的微观缺陷,改善了刃口质量。表3未处理刀片与微喷砂刃口钝化刀片刃口参数对比(μm)图4是微喷砂全因素试验时硬质合金刀片YT15的刃口线粗糙度的分布情况。可以得出,硬质合金YT15刀片的刃口线粗糙度为0.3-0.8μm,满足刀片的刃口粗糙度要求。图4硬质合金刀具YT15刃口线粗糙度分布(3)微喷砂刃口材料去除机理研究刀片的微喷砂过程实质上是高速磨料射流冲击材料表面,实现材料的去除。其材料去除机理主要归结为磨料颗粒对材料的去除方式。对于脆性材料,其去除机理往往不只有脆性去除,还包括磨料颗粒的微剪切引起的塑性去除。图5是硬质合金刀具YT15在喷砂压力P=0.25MPa、磨料目数M=320、喷砂时间T=20s和磨料比重W=0.1时的刃口形貌。可以看出,经过微喷砂处理后,刀具出现了圆弧刃口,对其圆弧刃口的区域A进行放大,可以观察刃口材料去除形成的微观形貌。通过区域B可以看出,其硬质合金中硬质相的去除多为由裂纹扩展造成的脆性断裂,这是由于棱角尖锐的磨料颗粒对于硬质相的冲击作用,使之产生径向裂纹和侧向裂纹,由于磨料颗粒的高频率冲击,进而造成侧向裂纹的扩张形成网状裂纹,达到材料的去除。对于C区域的观察,也可以发现刃口材料上存在磨料颗粒的刻划痕迹,这主要是由于具有锋利刃口的白刚玉磨料颗粒对工件材料的微切削作用导致。由于刀具材料中除硬质相成分外,还包括粘结相,其微切削作用相对于粘结相更为明显,粘结相材料先于硬质相去除,使得硬质相成分显露出来。因此微喷砂处理硬质合金刀具YT15的材料去除机理,包括由磨料冲击和水楔作用引起裂纹扩展而导致硬质相材料的脆性去除,还包括磨料颗粒的微切削作用引起的材料塑性去除。图5硬质合金刀具YT15微喷砂刃口形貌SEM图小结微喷砂处理可以对硬质合金刀具YT15刃口进行有效钝化,形成一定圆弧半径的刀具刃口。研究表明,刃口圆弧半径随着微喷砂时间和喷砂压力的增加而增大。对于磨料比重而言,在喷砂压力为0.2MPa和0.25MPa时,随着磨料比重的增加,刀具刃口半径先增大而后减小;在喷砂压力为0.3MPa和0.35MPa时,随着磨料比重的增加,刀具刃口半径呈现一直增大的趋势。微喷砂处理可有效改善硬质合金刀具YT15的刃口质量,消除微观缺陷,降低刃口线粗糙度,在结构上对刀具刃口进行钝化。硬质合金刀具YT15刃口材料的去除机理,包含由裂纹扩展而导致硬质相材料的脆性去除和微切削作用引起的材料塑性去除。)
常州昂迈工具有限公司
姓名: 黄明政 先生
手机: 18606205012
业务 QQ: 932023452
公司地址: 江苏省常州市西夏墅镇翠屏湖路19号13栋
电话: 0519-85522550
传真: 0519-85522551