
气动三通调节阀安装报价
从流体力学的观点看,调节阀是一种局部阻力可以变化的节流元件。对于不可压缩流体,流量仅随阻力系数变化。调节阀的阻力系数的变化是通过阀芯行程的改变实现的。一般调节阀与执行机构结合在一起工作。依次缓慢地将各点信号输入,观察行程指针与标尺刻度是否对应,否则应进行反复调整,直至达到标准。例如调节阀与气动执行机构结合成一个整体,即构成气动执行器,是现代工业控制系统中应用广的一种执行器。调节阀与电动执行机构相配合,可用作各种控制系统中的执行器(见气动执行元件,电动执行元件)。调节阀依用途不同有许多种结构型式。常用的是直通双座阀结构。阀芯上下移动便能改变与阀座的相对位置,阻力系数也随之变化。流体通过阀门的相对流量与阀门相对开度之间的关系,称为调节阀的流量特性,即式中Q/Q□为相对流量,即调节阀某一开度下的流量与全开时流量之比;□/L为相对开度,即调节阀某一开度下的行程与全开时行程之比。调节阀的流量特性主要决定于阀芯形状。用该方法操作存在以下问题:一是安全系数低,二是容易造成调节阀报废,三是工作过程耗时、费力,增加人工成本。常用的理想流量特性曲线有直线、等百分比(又称对数)、快开和抛物线几种(见图阀芯形状及其理想特性曲线),它们是在调节阀前后压差恒定的情况下得到的。气动调节阀的振动一般分为两种状态,一个是气动调节阀的整体振动,即整个气动调节阀在管道或基座上频繁颤动。另一个是调节阀阀芯的振动,这从阀杆上下频繁的移动可看出,以下就这两种振动原因及其处理措施分析如下:整个气动调节阀在管道上振动原因大致如下:管道或基座剧烈振动,易引起整个气动调节阀振动;此外还与频率有关,即当外部的频率与系统的固有频率相等或接近时受迫振动的能量达到值、产生共振。这两种因素有时相互影响,会使振动愈振愈烈,使管道跳动,附件或元件松动,并发出哒哒的响声,严重的还会造成阀杆断裂,阀座脱落,致使系统无法工作。基于这种情况,应对引起振动的各管道和基座进行加固,这也有助于消除外来频率的干扰。变送器的输出被送到调节仪——调节器,它确定并测量给定值或期望值与工艺参数的实际值之间的偏差,一个接一个地把校正信号送出给终控制元件——调节阀。流量调节阀选购时要注意:除了一般工业过程控制之外,在实验室和试验工厂里还存在许多需要控制很小流量的应用场合,如此小的流量使其全开流量比一般阀的泄漏量还小,所以仅凭一般的机械加工,一般的工艺是无法保证的,能解决问题的方法是对每台阀的流量特性进行实验标定,以终标定的,具体的,真实的流量来说明。执行机构类型的确定对执行机构输出力确定后,根据工艺使用环境要求,选择相应的执行机构。结构形式——通常解决小流量控制问题有两种方法:(1)在标准阀体中采用特殊阀内件。这种方法通常可做到Kv=0.03左右,在标准阀体中采用特殊阀内件具有很好的经济性和扩展性,因为这将减少对特殊阀体和执行机构备品备件的要求,同时也为将来流量的扩大提供了方便(将来仅需更换标准阀体内件)。(2)为超小流量调节而设计的专用调节阀可以做到Kv值为0.001左右,具有近似直线特性,一体化锻造,结构紧凑且重量轻。)