
高温烘干风机择优推荐
根据以往对高温烘干风机亚音速定子叶片的研究,前缘弯曲用于匹配迎角[20],根部弯曲高度为20%,端部弯曲角度为20,顶部弯曲高度为30%,端部弯曲角度为40,如图18左侧所示。弯曲高度和弯曲角度的选择是基于流入流的流动角度条件:如图5中蓝色箭头所示,定子叶片的流入角度受上游动叶片的影响,靠近端壁有两个不符合主流分布趋势的区域,而弯曲高度末端弯板的T应覆盖与流动角度匹配的区域;末端弯板角度的选择基于区域和主流流动角度之间的差异。不同叶片高度的不同进水条件导致叶片型线优化结果差异过大,难以对叶片型线进行过度优化。根据前面的研究,高温烘干风机前缘弯曲的定子叶片可以有效地消除流入攻角,但叶片的局部端部弯曲会导致叶片局部反向弯曲的形状效应。在保证端部攻角减小的同时,定子叶片端部的阻塞量增大,损失增大。在端部弯曲建模的基础上,适当叠加叶片正弯曲建模,可以减小端部攻角,保证定子叶片和级间的有效流动。通过实验设计的方法,得到了合适的前弯参数:高温烘干风机弯曲高度60%,轮毂弯曲角度40,翼缘弯曲角度20,基本符合以往研究得出的弯曲叶片设计参数选择规则。不同叶栅的吸力面径向压力梯度和出口段边界层边界的径向压力梯度可以很好地进行比较。根据机翼理论,通过吸力面的速度高于通过压力面的速度,吸力面后缘形成高速区。在带端弯和正弯叶片的三维复合叶片表面,存在两个明显的径向压力梯度增大区域,形成从端弯到流道中径的径向力,引导高温烘干风机叶片表面边界层的径向重排。从出口段附面层的边界形状可以看出,复合三维叶片试图使叶片的径向附面层均匀化,消除了叶片角部区域的低能流体积聚,对提高叶片边缘起到了明显的作用。介绍了一套高负荷高温烘干风机的气动设计过程,包括参数选择、叶片形状优化和三维叶片的设计思想。在此基础上,完成了高负荷轴流风机压力比1.20的初步设计,负荷系数高达0.83。其次,在初步设计方案中,通过对高温烘干风机静叶多叶高处S1流面剖面的协调优化,有效地减少了静叶损失,提高了风机的裕度。同时,采用三维叶片技术,提高了定子叶片的端部流动,提高了定子叶片端部区域的工作能力。风机裕度由27.1%扩大到48.8%。优化叶顶间隙形状可以有效地提高轴流风机的性能。采用FLUENT软件对OB-84动叶可调轴流风机在均匀和非均匀间隙下的性能进行了数值模拟,讨论了不同间隙形状对泄漏流场和间隙损失分布的影响。结果表明,在平均叶顶间隙不变的前提下,锥形间隙风机的总压力和于均匀间隙风机,区范围扩大,锥形间隙越大,性能改善越显著;锥形间隙改变了间隙内涡量场的分布,减少了叶尖泄漏损失,增强了高温烘干风机叶片上、中部的功能力。为了分析不同叶尖间隙形状下风机性能变化的内在机理,进行了内部流动特性和叶轮能力分析。风机的性能低于均匀间隙的性能。锥形叶片的叶尖间隙形状可以作为提高风机性能的重要手段。在高温烘干风机机械中,为了防止旋转叶片和固定壳体之间的摩擦,叶片顶部和壳体之间必须有一定的间隙。由于叶尖间隙的存在,不可避免地会发生泄漏流。泄漏流与主流相互作用形成的泄漏涡将影响涡轮机械的内部流场和气动性能,尤其是效率、高温烘干风机噪声和稳定的工作范围。因此,通过改变叶顶间隙形状,对叶顶泄漏流进行综合分析,提高涡轮机械的气动性能具有重要的现实意义和工程参考价值。目前,对叶尖间隙进行了一系列的实验和数值模拟研究,主要集中在叶尖和壳体两个方面。对于叶片顶部,Young等人[4]采用实验方法研究了单槽、双槽和上斜面对涡轮性能的影响。从高温烘干风机的一般参数出发,通过一维径向参数和子午向径向参数的设计,得到了初步设计方案的性能预测和几何参数。在此基础上,模拟了高温烘干风机、类型和位置对轴流风机性能的影响,指出在设计流量下,叶顶双槽结构具有较佳的气动性能,风机效率提高了1.05个百分点。对多级压缩机表明,叶根倒角还可以减小角区的失速,提高工作范围。高温烘干风机带肩端间隙涡轮的研究表明,压力侧和吸入侧后缘槽都可以略微增大叶片顶面传热系数,但吸入侧后缘槽可以减小间隙的泄漏损失。)