广西PEDOT好不好价格合理
考虑PEDOT:PSS材料本身的特性和硅表面结构光学管理后,硅与背金属电极界面的接触情况成为了制约电池效率提升的主要因素,硅/金属的直接接触会导致界面处形成肖特基势垒,对电子传输的阻碍作用极大,同时界面处严重的复合造成了载流子的损失。基于此,选用氧化锌作为电子选择性材料,将其用于界面处形成金属-介质-半导体结构,并对氧化锌进行Li掺杂调节其功函数进一步减小或消除界面势垒。另外,对硅表面通过本征非晶硅层钝化,这样既能钝化硅又能改善电接触。并结合硅金字塔陷光结构,终实现超过15%的电池转换效率。近日,中国科x院上海硅酸盐研究所研究员陈立东、副研究员姚琴的研究团队在聚3,4-乙烯二氧s吩(PEDOT)基有机/无机复合热电材料领域取得新进展。PEDOT:PSS因其良好的印刷性和柔韧性,是常应用于柔性透明电极的导电高分子材料。在以往的研究报道中,通常采用溶剂掺杂的方法提高PEDOT:PSS薄膜电导率。但这种方法提高电导率的程度有限,并且PEDOT:PSS薄膜自身的靛蓝色不利于作为钙钛矿太阳能电池的透明电极。一种采用氟离子液体作为PEDOT:PSS添加剂,来调控PEDOT和PSS二者相分离,实现制备网格状PEDOT:PSS薄膜。这种结构可提高PEDOT:PSS薄膜电导率超过4000S/cm,并显著提高了薄膜的透光率。研究团队结合其印刷电子的研究基础,采用狭缝挤出工艺,宏量印刷了PEDOT:PSS柔性透明电极,并成功应用于柔性钙钛矿太阳能电池和模组中。—均质处理PEDOT自百川英树等发现用碘或者氟h钾掺杂的聚y炔具有与金属相当的导电性,电导率可达10SS/cm以来,导电高分子成为科学的研究热点。柔性钙钛矿太阳能电池机械力学稳定性:(A)柔性电池模组在不同曲率半径弯折的照片。(B)柔性电池在不同曲率半径下弯折300次后的光电转换效率。(C)在3mm曲率半径下,柔性电池弯折5000次后的光电转换效率。(D)在3mm曲率半径下,不同有效面积的柔性电池弯折后光电转换效率。(XinyuJiang,ShanglongPeng*,etal。他们进一步测试了柔性电池的长时间稳定性。因为器件同时采用PEDOT:PSS作为电极和空穴界面层,避免了界面层PEDOT:PSS对于ITO电极的酸性腐蚀。封装器件经过180天测试后,仍具有80%初始光电转换效率。器件的稳定性也通过飞行时间二次离子质谱进行了深入研究。PEDOT:PSS:CFE电极克服了PEDOT:PSS的吸湿性问题,从而减缓钙钛矿器件的离子扩散,提高了稳定性。实验中应注意随着均质处理温度升高,如果冷水机温度不能满足实验要求,应暂停实验或更换冷水机和换热设备实验现象:1。研究人员选用表面活性剂十二***苯磺酸(DBSA)为辅助***制备PEDOT:PSS导电凝胶体系。当DBSA浓度达到约3v/v%时,体系基于物理交联在室温下能够实现凝胶化,同时凝胶化时间可根据DBSA浓度在2-200min之间进行精细调节。基于PEDOT链间π-π堆叠和疏水性相互作用构成的物理交联点,该PEDOT:PSS凝胶体系具有良好的自支撑成型性能。该PEDOT:PSS凝胶体系的导电率达约10-1Scm-1,远超过大脑或脊椎等领域对可植入水凝胶体系导电性能的需求。改进或找到一种新的合成方法以提高EDOT的产率、降低生产成本是当前科研工作者的主要任务。)