9-26离心风机信赖推荐
综上所述,本文通过结构优化对离心风机金属叶轮稳定运行影响进行研究,简要分析了各部件结构优化对离心风机金属叶轮稳定运行的影响。(4)进口调节阀宜优先选用叶片阀,它在工作时能实现管道内输送介质的均匀分布,防止产生剧烈涡流而发生振动。主要从集流器优化对离心风机金属叶轮稳定运行影响、窝壳优化对离心风机金属叶轮稳定运行影响、电机优化对离心风机金属叶轮稳定运行影响,以及叶片形状优化对9-26离心风机金属叶轮稳定运行影响四个方面进行分析,为保证金属叶轮的稳定运行提供技术支持。各部件结构优化对离心风机金属叶轮稳定运行的影响集流器优化对9-26离心风机金属叶轮稳定运行的影响集流器的工作原理是通过将气流均匀地送入叶轮进口截面,以达到提高9-26离心风机叶轮的效率以及风机整体性能的目的。各种加装吸声结构组合,风机蜗壳内部的通流结构尺寸和原风机一致。集流器的结构形式对气流的流动损失以及金属叶轮的平稳运行都有很大影响,因此对集流器的结构优化是非常重要的。在设计集流器的结构时,应确保较大程度地符合金属叶轮附近气流的流动情况,同时还应保证集流器内气流的平稳运行。集流器的类型有很多种,常用的集流器是锥弧形集流器,锥弧形集流器的气流运行一般比较平稳,但是集流器喉部到叶轮进口阶段容易发生边界层分离现象,增加9-26离心风机的损失,导致离心风机效率降低。因此,必须优化集流器结构,通过减小集流器的锥度、增加喉部半径的方式,提高离心风机的效率,保证金属叶轮的平稳运行。叶片形状优化对9-26离心风机金属叶轮稳定运行的影响叶片的结构优化对离心风机金属叶轮平稳运行有着重要的影响。而在风机实际运行过程中,9-26离心风机叶轮出口气流与蜗壳壁面间存在强烈的非定常干涉,使得蜗壳壁面成为风机的主要噪声源。目前很多学者研究了叶片出口安装角的结构优化以及叶片高度的结构优化,但是对于叶片形状的结构优化研究得较少。气流在叶片的不同区域的流动有很大的不同。在叶轮前盘,气流的流动方式主要是轴向流动。在叶轮的中后盘,气流的流动方式主要是径向流动。通过这种方式,达到叶轮前盘向中后盘送风,使叶轮中后盘出风的目的。由此可见,通过对叶片形状进行优化设计,可以在一定程度上增加叶片的送风量以及有效通道的宽度,使得离心风机的效率得到提高,从而保证金属叶轮的平稳运行。9-26离心风机具有体积小、压力系数高等一系列优点,在工业、农业等各个领域都得到广泛应用,是人们生产生活中必不可少的一种机器设备。本文研究的目的在于针对工业生产中常用的离心式风机运行中易于发生的振动现象进行研究和可采取的处理措施,应该能对生产一线中从事此类设备管理和维修的人员提供借鉴意义。离心风机主要由集流器、蜗壳、电机以及叶片四个部件组成。各部件的结构优化对离心风机金属叶轮稳定运行起着重要的作用。随着科学技术的发展以及生活水平的提高,对9-26离心风机进行结构优化越来越受到人们的关注。因此本文通过对集流器优化、蜗壳优化、电机优化以及叶片形状进行优化,来观察结构优化之后的离心风机对金属叶轮稳定运行的影响,以促进离心风机的生产工作朝着更完善、更健康的方向发展。针对9-26离心风机有无进气箱两种结构形式,建立了两种计算模型,利用CFX软件对两种模型进行数值模拟,研究其内部三维流场特性,基于数值模拟结果分析了进气箱对离心风机的性能影响。其出口速度的不均匀性对9-26离心风机性能影响明显,有必要对其特性进行研究。数值模拟结果表明:加进气箱后,离心风机的全开流量与压力有所降低,缩短了有效工作区域;在9-26离心风机内部叶轮进口处产生涡旋现象,堵塞了叶轮流道,使风机的效率和压力降低。数值模拟结果与实验测试值对比是比较吻合。进气箱是离心风机重要的组成部分,主要应用于大型离心风机与双吸离心风机。进气箱在其出口处气体发生近90°转弯,内部流场十分复杂,并造成很大的流动损失。其出口速度的不均匀性对9-26离心风机性能影响明显,有必要对其特性进行研究。A.G.Sheard通过研究加进气箱的通风机,在9-26离心风机叶轮进口加导流板控制叶轮进口的非均匀气流,结果表明在叶轮进口加导流板能够提高风机的全压,并得出了叶片根部断裂的原因。使用三维粒子动态分析仪(3D-PDA)对大型风机进气箱内部三维气体流场进行测量,揭示了其内部流动的基本特征,为了解进气箱流场结构和流动机理提供了依据。消声蜗壳对9-26离心风机气动性能的影响原风机与不同消声组合试验所得的气动性能对比如图3所示。加米字集流器风机进口静压明显高于普通集流器离心风机,其较大静压达到2510Pa,普通集流器达到1440Pa。试验结果表明:由于穿孔板相对于光滑的铝板有着较高的壁面摩擦阻力,导致加装穿孔板后的风机压力和效率在整个测试工况范围内都有不同程度的降低。4种消声组合方式的压力损失并不相同,当额定转速为3800r/min,在设计工况下,A组合改进风机全压降低了约16.0Pa,效率下降了约1.28%;B组合改进风机全压降低了约5.0Pa,9-26离心风机效率下降了约0.9%;C组合改进风机全压降低了约36.8Pa,效率下降了约3.18%;D组合改进风机全压降低了约45.8Pa,效率下降了约3.28%。主要由于安装穿孔板的面积不同,导致不同消声组合方式的摩擦损失不同。BEENA等[11]通过应用层次分析法(AHP),对蜗壳的重要几何参数进行了优先排序,阐明了各参数对离心风机性能的影响。B组合即只在风机后盖板上安装穿孔板,风机压力损失小。不同工况下,风机压力和效率损失也不相同,在设计工况及偏大流量工况下,9-26离心风机压力和效率损失较大,效率也同步降低。主要原因是大流量工况下,蜗壳内部气流速度较高,气流与穿孔板之间的摩擦损失增加。消声蜗壳为A组合形式时与原风机的出口A声级随流量变化的对比图。可以看出,不同工况下,A型消声蜗壳的降噪效果不同,9-26离心风机在额定工况点附近,降噪效果好;在大流量工况下,降噪效果变差,这主要因为大流量情况下,蜗壳内气体流速较大,而气体流速对吸声材料的吸声效果影响很大;在小流量工况下,风机流动恶化,风机振动较大,导致振动噪声很大以致降噪效果反而变差。与原风机相比,在额定工况点A声级降低约4.5dB(A),在大流量工况下,A声级降低约3.6dB(A),在小流量工况下,A声级降低约1.9dB(A)。)
山东冠熙环保设备有限公司
姓名: 李海伟 先生
手机: 15684302892
业务 QQ: 3089959253
公司地址: 山东省临朐县223省道与南环路交叉口往南2公里路西
电话: 0536-3690068
传真: 0536-3690068