金属封装外壳定做生产基地「在线咨询」
不少低密度、的金属基复合材料非常适合航空、航天用途。金属基复合材料的基体材料有很多种,但作为热匹配复合材料用于封装的主要是Cu基和灿基复合材料。冷作硬化的全铜尽管有较高的抗拉强度,但在外壳生产制造或密封性时不高的溫度便会使它淬火变软,在开展机械设备冲击性或稳定瞬时速度实验时导致外壳底端形变。金属封装外壳此外密度较大,不适合航空、航天用途。1.3钢10号钢热导率为49.8W(m-1K-1),大约是可伐合金的三倍,它的CTE为12.6×10-6K-1,与陶瓷和半导体的CTE失配,可与软玻璃实现压缩封接。不锈钢主要使用在需要耐腐蚀的气密封装里,不锈钢的热导率较低,如430不锈钢(Fe-18Cr,中国牌号4J18)热导率仅为26.1W(m-1K-1)。Cu基复合材料纯铜具有较低的退火点,它制成的底座出现软化可以导致芯片和/或基板开裂。为了提高铜的退火点,可以在铜中加入少量Al2O3、锆、银、硅。这些物质可以使无氧高导铜的退火点从320℃升高到400℃,而热导率和电导率损失不大。虽然设计者可以采用类似铜的办法解决这个问题,但铜、铝与芯片、基板严重的热失配,给封装的热设计带来很大困难,影响了它们的广泛使用。1.2钨、钼Mo的CTE为5.35×10-6K-1,与可伐和Al2O3非常匹配,它的热导率相当高,为138W(m-K-1),故常作为气密封装的底座与可伐的侧墙焊接在一起,用在很多中、高功率密度的金属封装中Cu/W和Cu/Mo为了降低Cu的CTE,可以将铜与CTE数值较小的物质如Mo、W等复合,得到Cu/W及Cu/Mo金属-金属复合材料。②材料生产制造灵便,价钱持续减少,非常是可立即成型,防止了价格昂贵的生产加工花费和生产加工导致的材料耗损。这些材料具有高的导电、导热性能,同时融合W、Mo的低CTE、高硬度特性。Cu/W及Cu/Mo的CTE可以根据组元相对含量的变化进行调整,可以用作封装底座、热沉,还可以用作散热片。用作封装的底座或散热片时,这种复合材料把热量带到下一级时,并不十分有效,但是在散热方面是极为有效的。这与纤维本身的各向异性有关,纤维取向以及纤维体积分数都会影响复合材料的性能。为解决封装的散热问题,各类封装也大多使用金属作为热沉和散热片。不锈钢主要使用在需要耐腐蚀的气密封装里,不锈钢的热导率较低,如430不锈钢(Fe-18Cr,中国牌号4J18)热导率仅为26.1W(m-1K-1)。本文主要介绍在金属封装中使用和正在开发的金属材料,这些材料不仅包括金属封装的壳体或底座、引线使用的金属材料,也包括可用于各种封装的基板、热沉和散热片的金属材料。与传统金属封装材料相比,它们主要有以下优点:①可以通过改变增强体的种类、体积分数、排列方式或改变基体合金,改变材料的热物理性能,满足封装热耗散的要求,甚至简化封装的设计;②材料制造灵活,价格不断降低,特别是可直接成形,避免了昂贵的加工费用和加工造成的材料损耗;金属封装外壳压铸成型工艺:全压铸的工艺和塑料制品的生产流程十分相似,都是利用精密模具进行加工,只是材质由塑料改成了融化的金属;CNC与压铸结合工艺;为了减少陶瓷基板上的应力,设计者可以用几个较小的基板来代替单一的大基板,分开布线。退火的纯铜由于机械性能差,很少使用。但由于其热导率低,电阻率高,密度也较大,使其广泛应用受到了很大限制。加工硬化的纯铜虽然有较高的屈服强度,但在外壳制造或密封时不高的温度就会使它退火软化,在进行机械冲击或恒定加速度试验时造成外壳底部变形。虽然设计者可以采用类似铜的办法解决这个问题,但铜、铝与芯片、基板严重的热失配,给封装的热设计带来很大困难,影响了它们的广泛使用。1.2钨、钼Mo的CTE为5.35×10-6K-1,与可伐和Al2O3非常匹配,它的热导率相当高,为138W(m-K-1),故常作为气密封装的底座与可伐的侧墙焊接在一起,用在很多中、高功率密度的金属封装中.金属封装外壳压铸成型工艺:全压铸的工艺和塑料制品的生产流程十分相似,都是利用精密模具进行加工,只是材质由塑料改成了融化的金属;CNC与压铸结合工艺;)