
安徽激光焊接设备的用途和特点 芜湖劲松焊接加工
怎么减小焊接残余变形?预热焊接不均匀热场是产生焊接变形的主要原因。因此采用适当的预热;使焊接温度分布趋于均匀,也是一种减小焊接残余变形的有效措施。用拉伸法和加热法减小焊接薄板的平面外变形用机械法或预热法使被焊壁板进行拉伸或伸长,与此同时将壁板焊到结构的框架上,焊完后,去掉拉伸载荷。此时壁板的收缩受到被焊框架的拘束,从而在壁板上只有小量的平面外变形产生。这时在焊接后壁板内存有残余拉伸应力,而在框架内则存有残余压应力。这种方法对减小焊接薄板的压曲变形具有良好的效果。双相不锈钢的焊接要点①焊接热过程的控制焊接线能量、层间温度、预热及材料厚度等都会影响焊接时的冷却速度,从而影响到焊缝和热影响区的***和性能。冷却速度太快和太慢都会影响到双相钢焊接接头的韧性和耐腐蚀性能。冷却速度太快时会引起过多的α相含量以及Cr2N的析出增加。过慢的冷却速度会引起晶粒严重粗大,甚至有可能析出一些脆性的金属间化合物,如σ相。表1列出了一些推荐的焊接线能量和层间温度的范围。在选择线能量时还应考虑到具体的材料厚度,表中线能量的上限适合于厚板,下限适合于薄板。在焊接合金含量高的ω(Cr)为25%的双相钢和超级不锈钢时,为获得较佳的焊缝金属性能,建议高层间温度控制在100℃。当焊后要求热处理时可以不限制层间温度。②焊后热处理双相不锈钢焊后不进行热处理,但当焊态下α相含量超过了要求或析出了***相,如σ相时,可采用焊后热处理来改善。所用的热处理方法是水淬。热处理时加热应尽可能快,在热处理温度下的保温时间为5~30min,应该足以***相的平衡。在热处理时金属的氧化非常严重,应考虑采用惰性气体保护。对于ω(Cr)为22%的双相钢应在1050℃~1100℃温度下进行热处理,而ω(Cr)为25%的双相钢和超级双相钢要求在1070℃~1120℃温度下进行热处理。焊接中的缺陷总结分析:现象:在焊接过程或焊接之后,在焊接区域内出现金属破损,它产生在焊缝内部或外部,也可能发生在热影响区,按其产生的部位可分为纵向裂纹、横向裂纹,弧坑裂纹、根部裂纹等,又可分热裂纹、冷裂纹和再热裂纹。原因:焊缝热影响区收缩后产生大的应力。母材含淬硬***较多,冷却后易生裂纹。焊缝中有相当高的氢浓度。及其他***元素杂质等,易产生冷、热裂纹。防治措施:主要从消除应力和正确使用焊接材料以及完善的操作工艺入手解决。注意焊接接头坡口形式,消除焊缝不均匀受热和冷却因热应力而产生的裂纹。如不同厚度的钢板对焊时,对厚钢板就要做削薄处理。选用材料一定要符合设计图样的要求,严格控制氢的来源,焊条使用前应进行烘干,并认真清理坡口的油污、水分等杂质。焊接中,选择合理的焊接参数,使输入热量控制在800~3000℃的冷却温度之间,以改善焊缝及热影响区的***状态。在焊接环境温度较低、材料较薄,除提高操作环境温度外,还应在焊前预热。焊接结束要设法保温缓冷和焊后热处理,以消除焊缝残余应力在冷却过程中产生的延迟性裂纹。随着信息科技的进步,机械化、工业化逐渐成为企业生产的主旋律,机器人越来越主流。焊接机器人作为工业机器人的重要组成部分,占据工业机器人总量40%以上,技术创新能力和国际竞争能力明显增强,因此,焊接机器人有望迎来第二春。焊接机器人凭借可以稳定和提高焊接质量;改善工人劳动强度,可在***环境下工作;缩短产品改型换代的准备周期,减少相应的设备***等众多优点,已经可以代替人力在各类操作环境下稳定运行施工,并且在各行各业已得到了广泛的应用。焊接机器人发展的如此迅猛,焊工的饭碗确实不再稳固。焊接机器人的工作效率基本可以代替3-4名电焊工人同时工作所达到的效果,并且还具备了以下人工难以拥有的优势:1.稳定和提高焊接质量,保证其均一性。焊接参数如焊接电流、电压、焊接速度及焊接干伸长度等对焊接结果起决定作用。采用机器人焊接时对于每条焊缝的焊接参数都是恒定的,焊缝质量受人的因素影响较小,降低了对工人操作技术的要求,因此焊接质量是稳定的。而人工焊接时,焊接速度、干伸长等都是变化的,因此很难做到质量的均一性。2.改善了工人的劳动条件。采用机器人焊接工人只是用来装卸工件,远离了焊接弧光、烟雾和飞溅等,对于点焊来说工人不再搬运笨重的手工焊钳,使工人从大强度的体力劳动中解脱出来。)