
节能离心风机推荐货源
节能离心风机改造后,风机总压明显提高。虽然方案一的总压在大流量区和小流量区附近增加较多,但在额定流量附近总压的改善不如方案三,结合效率提高的数据,很明显方案三是较佳的优化方案。风机总压提高4.25%,效率提高1.49%。方案四,效率降低0.19%,主要是由于流经槽的流体与原叶轮内的高速流体发生强烈碰撞,造成冲击损失。在风机运行过程中,当集热器流入叶轮转轮时,流体受到惯性力和科里奥利力的影响,在后圆盘B段附近形成高速区,使B段附近的流速和流量大于A段,从而使风机性能从两个方面得到改善。一是提高前盘的径向速度,即A段,使节能离心风机出口处的流体速度趋于均匀;二是优化后盘附近的速度梯度。由此可见,开槽后叶轮出口处的流速整体上得到了提高。叶轮转轮内靠近后圆盘的速度在整个转轮内比较均匀,没有明显的高速聚集区,因此流场比较合理。与子午面上的原风机相比,其轴向平均速度较高,速度梯度较小。因此,开槽改善了叶轮通道内的流场,大大提高了节能离心风机的总压和效率。边界层分离现象发生在原风机叶片通道的吸力面上,形成较大的涡流区;在通道的后半段,边界层分离现象也发生在通道的吸力面上。叶片压力面上的压力高于吸入面上的压力。二次流在叶轮通道中形成(其部分速度沿叶轮的圆周方向)。例如当通风机的功率特性曲线较平整时,此刻风机的搞效区较大,在变工况时通风机仍能够在搞效的工况点小作业,此刻能够认为该风机的适应性较好。同时,在离心力的作用下,圆周方向形成一定的角度。节能离心风机蜗壳优化设计方法的研究进展横截面面积的圆周变化、横截面形状、横截面的径向位置、蜗壳入口位置、蜗舌的结构是蜗壳的五个主要几何参数。其中蜗舌的位置、角度和形状,在避免内部冲击、减少分离损失和降低噪声等方面起着重要的作用。蜗壳的各几何参数对风机内部流动的影响并不是***的,它们之间既相互关联,又相互影响,因此,在确定这些几何参数时要进行考虑。采用数值计算与响应面法相结合的手段对蜗壳的三个主要几何参数(蜗壳出口的扩张角、叶轮的露出长度、蜗舌间隙)进行了优化,结果表明通过优化蜗舌间隙和叶轮的露出长度,不仅可以提高风机的效率,还可以降低风机的A声级噪声。按一维设计理论(等环量法)蜗壳型线应为一条对数螺旋线。通过对方程的简化处理,节能离心风机按照等边基元法和不等边基元法可以快速完成蜗壳型线的绘制。节能离心风机采用改进的等边基元法绘制离心风机的蜗壳型线,通过数值计算与实验研究,结果表明采用改进的等边基元法绘制蜗壳型线,不仅可以提高离心风机的效率,还可以降低风机的噪声。在蜗壳型线一维设计理论的基础上,通过考虑气体粘性因素的影响,对风机原外壳进行了改进。工作人员进行了技术探讨,确定了节能离心风机、脱硫增压风机的风量、风压及系统抗延长性能。研究结果表明,通过考虑气体粘性,对蜗壳型线进行改进,可以减小蜗壳内的流动损失,提高风机的效率。在节能离心风机样机的基础上,只增加了风机叶轮的旋转直径。因此,改进后的风扇与样机的几何相似性不满足风扇相似性原理的条件。因此,通过改进后的数值计算分析了改进效果。第二种改进方案的基本思想是在风机外壳不变的情况下,增加风机叶轮的旋转直径。风机叶轮的具体改进方法在保持叶片出口安装角度不变的前提下,风机叶轮的旋转直径分别由480mm增加到490mm和500mm。通过对改进后的节能离心风机的数值计算,在第二种改进方案中通过增加叶轮的旋转直径来提高风机的总压。当叶轮旋转直径增加到490m时,改进后的风机总压力增加到4765pa,相应的风机运行力矩增加到4.65n.m,风机效率基本不变。当叶轮旋转直径增加到500m时,风机总压力增加到4835pa,但风机扭矩相应增大,风机效率降低。(1)对引风机和脱硫增压风机的风量、风压和系统阻力进行了试验。节能离心风机样机蜗舌流线图表明,当气体流经样机蜗舌位置时,大量气体通过蜗舌与叶轮之间的间隙T流回蜗壳,流量损失较大。)