
龙岗区铁基粉末冶金质量放心可靠「多图」
真空热处理真空热处理即真空技术与热处理两个***相结合的综合技术,是指热处理工艺的全部和部分是在真空状态下进行的。真空热处理几乎可实现全部热处理工艺,如淬火、退火、回火、渗碳、渗铬、氮化,在淬火工艺中可实现气淬、油淬、硝盐淬火、水淬等,它与普通热处理相比较具有以下优点。氢气在一定的温度条件下具有很强的渗透性,是一种化学活性较强的可燃性无***体,常在钨、硬质合金、不锈钢等难熔粉末冶金制品的烧结中作为保护气氛。1、不氧化、不脱碳、不增碳对工件内部和表面有良好的保护作用2、提高整体机械性能、脱气和促进金属表面的净化作用3、工件变形小4、可减少工件含金元素挥发性5真空热处理炉热效率高,可实现快速升温和降温;稳定性和重复性好。工作环境好,操作安全,没有污染和公害。达克罗技术的优缺点优点1.高耐热性:达克罗可以耐高温腐蚀,耐热温度可达300℃以上。而传统的镀锌工艺,温度达到100℃时就已经起皮报废了。2.很好的耐蚀性能:达克罗膜层的厚度仅为4-8μm,但其防锈效果却是传统电镀锌、热镀锌或涂料涂覆法的7-10倍以上。采用达克罗工艺处理的标准件、管接件经耐盐雾试验1200h以上未出现红锈。3.良好的渗透性:由于静电屏蔽效应,工件的深孔、狭缝,管件的内壁等部位难以电镀上锌,因此工件的上述部位无法采用电镀的方法进行保护。达克罗则可以进入工件的这些部位形成达克罗涂层。4.无氢脆性:达克罗的处理工艺决定了达克罗没有氢脆现象,所以达克罗非常适合受力件的涂覆。现在,我们看到了很多为MIM设计的新的材料,其中有叠片结构的(硬磁-软磁,磁性的-非磁性的,传导性的-绝缘的)、泡沫金属及孔新建,这些可选择的项目,都将MIM推进到了几乎没有工艺可替代的领域。5.结合力及再涂性能好:达克罗涂层与金属基体有良好的结合力,而且与其他附加涂层有强烈的粘着性,处理后的零件易于喷涂着色,与有机涂层的结合力甚至超过了磷化膜。缺点1.达克罗的烧结温度较高、时间较长,能耗大。2.达克罗涂层的导电性能不是太好,因此不宜用于导电连接的零件,如电器的接地螺栓等。3.达克罗中含有对环境和******的铬离子,尤其是六价铬离子具有致***作用。4.达克罗涂层的表面颜色单一,只有银白色和银***,不适合汽车发展个性化的需要。不过,可以通过后处理或复合涂层获得不同的颜色,以提高载重汽车零部件的装饰性和匹配性。5.达克罗的表面硬度不高、耐磨性不好,而且达克罗涂层的制品不适合与铜、镁、镍和不锈钢的零部件接触与连接,因为它们会产生接触性腐蚀,影响制品表面质量及防腐性能。金属粉末充模模拟机理和颗粒模拟的使用对于多相填充流,人们发现可以因为剪切力作用,或是颗粒间的相互作用而形成些独特的结构。七、喷砂喷砂:是采用压缩空气为动力,以形成高速喷射束将喷料高速喷射到需处理工件表面,使工件表面的外表面的外表或形状发生变化,获得一定的清洁度和不同的粗糙度的一种工艺。特性使得这一现象尤为突出。这就带来了一些问题,比如:流体是否均匀,流体是否是多相的且每个组分是否都起着***的作用来影响整个流体的流动性。通过观察流道横截面上的流体可以发现许多有趣的现象。和中显示的是横截面的放大图,显示出了相的分离以及年轮一样的结构。上面图片中的白色条纹是相分离的一种表征,那里是一些粘结剂中的低熔点组分。在这样的地方很容易产生裂纹。这种结构明显表明流体是多相的,甚至可能是类固体的。所以实际上的MIM喂料熔体是非均质的流体,其运动方式和均质流体存在着差异。在粉末-粘结剂两相体系中,粉末颗粒和粘结剂之间存在着强烈的相互作用,因此颗粒附近粘结剂的运动将受到一定的限制。⑤马氏体:钢加热到一定温度(形成奥氏体)后经迅速冷却(淬火),得到的能使钢变硬、增强的一种淬火***,常用M表示,马氏体是体心正方结构。在这个模型里,将具有不规则形状的粉末简化为规则球形的颗粒,每个颗粒周围包覆着一层粘结剂,这层粘结剂随颗粒一起运动,即将其看成一个复合单元。粘结剂的厚度假定是常数,以此确保系统质量的恒定。尽管这些复合单元的周围还有自由粘结剂的存在,且其粘性制约了粉末颗粒的运动,还是可将复合单元看成是不受外围粘结剂介质的影响。修正颗粒模型颗粒模型较为充分地考虑了MIM喂料的独特性,可以描述粉末的运动情况,因此这个模型在简单计算每个粉末颗粒的实际运动情况方面较为精准,但对于实际的三维问题,颗粒模型的微观分析需要大量的单元,且容易造成计算的发散。金属粉末冶金是一种利用金属粉末(或金属粉末与非金属粉末的混合物)作为原料,经过成形和烧结制成金属或合金零部件的技术。很难将其应用到诸如粉末等微细粉末的分析。所以必须对已有的颗粒模型进行一定的修正。展示了通过这种颗粒模型模拟出来的MIM喂料充模的情况。从中可以较清楚地看出密度分布的不均匀性。结论由于MIM喂料在模腔中的流动可以看成是固-液两相流动,所以采用传统的连续介质模型来进行流动模拟存在较大的偏差。☆复杂性MIM工艺适合制造几何形状复杂的以及在切削加工中需要转换位置的多轴零件。很多研究表明,MIM喂料在充模过程中将发生粉末和粘结剂分离的现象。通过这种方法可以直接考察粉末特性(粒度、粒径分布、密度和形状等)对流动过程的影响。从而可以监视流动过程中粉末的运动、聚集以及密度变化分布情况和两相分离等特殊现象。为了简化三维问题中的计算,还在基于修正颗粒流体动力学的基础上对该模型进行了修正。)