烟台柜式离心通风机询问报价
柜式离心通风机广泛应用于冶金、化工、钢铁、水泥等重工业。其结构特点是整体结构紧凑,叶轮宽径比小,内、外径比小,长、短叶片分布均匀,压力系数高,流量系数小,因此常用于高压、小流量场合。结果表明,所设计的风机满足风机的设计要求,可以继续后续的设计工作。针对风机效率低、加工工艺复杂等缺点,提出了一种改进的风机效率设计方案,并采用CFD数值计算方法进行了分析验证。本文对风机进行改进和设计的主要思路是利用N-S方程和SSTK-U湍流模型计算斜槽风机样机的流量。数值计算结果与原始测量数据吻合较好,证明了该计算模型和数值计算方法的可行性。通过对柜式离心通风机不同截面的等值线和流线的观测,分析了叶轮通道内流动损失的原因。通过控制叶片吸力面边界层的分离,降低了风机的内部流动损失。针对风机内部流动状况,提出了三种不同的改进方案。增大前向离心风机叶片的出口安装角,不仅可以提高风机的总压,而且可以增加噪声,降低风机的效率。在改进方案不能满足性能要求的情况下,对风机进行了重新设计。为了使风机叶片通道内的流动更加合理,根据叶轮通道截面面积逐渐变化的原理,建立了风机叶片型线形成的数学模型,并根据该数学模型完成了风机叶片型线的设计。风机叶片的设计采用“双圆弧”成形方法,不仅简化了风机的加工工艺,而且使风机的总压力提高到5257pa,效率提高到68%。***后介绍了离心风机的瞬态计算方法,分析了瞬态计算中时间步长的选择原则。采用瞬态数值方法对新设计的风机内部流动进行了数值模拟。在瞬态计算结果稳定后,柜式离心通风机采用FW-H模型计算了设计风机的气动噪声,远场噪声值为58dB。柜式离心通风机的传动方式因使用场合不同而不同,离心风机的传动方式也不同,如图1.2所示。当离心风机叶轮的转速与电机相同时,大型风机可以通过联轴器将风机叶轮与电机直接联接,称为D传动。这种传动方式的优点是可以使风机结构紧凑,减少机身。当风机是小型机器时,叶轮可直接与电机轴连接,称为A型传动。这种传动方式可以有效地减小风机的体积,使风机结构更加紧凑。当风机转速与电机转速不同时,可采用皮带轮变速传动方式。柜式离心通风机根据具体形式可分为B、C、E、F四种,通常叶轮安装在主轴端部。然而,当只改变叶轮结构参数时,改进后的风机与原型风机的相似性将不能得到满足。这种结构叫做悬臂。其优点是易于拆卸。对于大型单吸和双吸离心风机,叶轮通常放置在两个轴承的中间。这种结构称为双支承式。其优点是风扇运转平稳。流量损失会降低柜式离心通风机的实际压力,泄漏损失会降低风机的流量,叶轮损失和机械损失会导致风机附加功率的增加,从而降低风机的效率。流量损失气体流经柜式离心通风机的进气室、叶轮、蜗壳和出口扩压器。由于气体通道的粘性和形状不同,在整个流动过程中存在摩擦损失和涡流损失(边界层分离、二次流、尾流损失等)。目前,在现有的离心风机损失模型中,不同部件的各种损失(如进气室损失、叶轮进口气流从轴向到径向的损失、叶轮通道损失、蜗壳损失、变工况下叶片进口冲击损失)是***计算的。可以看出,柜式离心通风机样机长、短叶片的吸力面不仅产生分离现象,而且产生两个涡,设计工况下设计风机长、短叶片的吸力面存在一些分离现象,但没有明显的分离现象。产生了美国漩涡。通过比较两种方法的流线图可以看出,所设计的风机的整体流动性能得到了很大的提高,设计的风机的效率得到了很大的提高。为了计算风机内部的气动噪声,采用瞬态计算方法对离心风机内部的流场进行了计算。风机的瞬态计算过程如下所述。瞬态计算的收敛性判断。在柜式离心通风机瞬态计算过程中,每一时间步都相当于一个稳态过程。当离心风机叶轮的转速与电机相同时,大型风机可以通过联轴器将风机叶轮与电机直接联接,称为D传动。因此,有必要保证计算在每个时间步的收敛性。瞬态计算过程中存在内迭代的概念,内迭代的原理与稳态解的原理相同。内部迭代次数可以通过模型树节点的运行计算面板中的参数maxIteration/timestep来设置。瞬态计算时间步长的确定是瞬态解的关键步骤。时间步长设置不当会导致一系列问题。如果时间步长太大,一个时间步长很难收敛和发散,时间分辨率太低。如果时间步长太小,迭代次数会增加,计算开销也会增加。因此,设定合理的时间步长是非常重要的。柜式离心通风机采用公式计算时间步长。设置原则是风机转子每转一次。)
山东冠熙环保设备有限公司
姓名: 李海伟 先生
手机: 15684302892
业务 QQ: 3089959253
公司地址: 山东省临朐县223省道与南环路交叉口往南2公里路西
电话: 0536-3690068
传真: 0536-3690068