烟台高压离心式风机常用解决方案
通过对高压离心式风机不同方案的改进,得出如下结论:向内延长斜槽风机叶轮的短叶片,可以有效地减小风机所需的扭矩,提高风机在设计条件下的效率;延长斜槽风机叶轮的长叶片和短叶片,可以提高风机的效率。外扩可以明显提高风机的总压,但随着总压的增大,风机所需的扭矩也随之增大。因此,风扇的效率几乎不变。离心风机结构参数试验模型为2900转/分斜槽离心风机,传动方式为A型传动。减小斜槽离心风机样机蜗壳与叶轮的间隙,不仅可以提高风机的总压,而且可以降低风机所需的扭矩,提***率2.1%。通过对高压离心式风机样机内部流动的分析,提出了三种不同的改进方案,每种方案都提高了风机的一定性能参数。风机短叶片向内加长,提高风机效率;风机旋转直径增大,风机总压增大;蜗壳舌与风机叶轮间隙适当减小,风机总压和效率提高。证实了。但高压离心式风机仍采用复杂的曲面叶片结构,这不会改善风机加工工艺的复杂故障,每一个改进方案都不能改善风机叶片通道内的流动特性,使风机的总压力值达到5000pa以上,且冲击力较大。提高风扇的效率。以出口压力作为衡量离心风机性能的指标,采用LSSVM建立离心风机性能预测模型。如果只重新设计风机的叶轮结构,必然会导致叶轮与风机蜗壳结构不匹配,导致风机性能急剧下降。因此,本文采用现代风机设计理论,以全压5000pa、转速2900rmp、高压离心式风机的风量1300hm/3为设计目标,对风机进行了重新设计,以满足合作公司的性能要求,提高风机的整体性能。在设计中,主要介绍了风机叶轮、蜗壳和集热器结构参数的选择方法,介绍了叶片结构的选择。本文主要完成设计高压离心式风机的稳态和瞬态数值计算,在瞬态数值计算结果稳定后,采用FW-H模型计算设计风机的气动噪声值。根据数值计算结果,得出以下结论:(1)通过比较设计风机样机和斜槽离心风机样机的数值计算结果,可以看出在设计流量条件下重新设计的离心机,风机的总压值高于E设计目标,效率68%,效率比样机高19.9%,总压值由4626pa提高到5257pa,均满足合作单位的性能要求。(2)通过观察原型风机和斜槽风机叶片通道的流线图,可以看出设计风机的长、短叶片吸力面分离较弱,但没有强涡流区。与样机的内部流程相比,该流程有了很大的改进,效率也有了很大的提高。(3)根据计算出高压离心式风机的噪声频谱,可以看出设计风机的声压在1100Hz时有一个峰值,声压值为58dB。在远场噪声计算中,随着受流点到叶轮中心距离的增加,风机噪声值呈下降趋势。高压离心式风机的设计方法,对所设计风机的稳态计算结果进行了分析。在离心风机设计完成后,根据具体设计参数建立了离心风机的三维模型。第三章采用样机的数值计算方法,对设计工况下的风机进行了计算。原型风机和斜槽风机的比转速分别为13.89和11.08。由于适当增大了前风机的迎角和安装角,可以减小风机叶片通道的流量损失。根据不同的比转速,可对风机进行分类。可以看出,所设计的风机和原型风机属于不同的系列,但在全压、效率等方面都有所提高。可以证明第四节风机的设计方法是正确合理的。通过对设计高压离心式风机的数值计算参数与风机初始设计值的比较,可以看出设计风机的总压值高于设计目标,效率为68%,效率比原型风机高19.9%,总压值由4626提高到4626。PA至5257PA,均满足合作单位的性能要求。可以看出,高压离心式风机样机长、短叶片的吸力面不仅产生分离现象,而且产生两个涡,设计工况下设计风机长、短叶片的吸力面存在一些分离现象,但没有明显的分离现象。产生了漩涡。结合SSTK-U湍流模型,对斜槽风机的原型风机、改进风机和设计风机进行了流量计算。通过比较两种方法的流线图可以看出,所设计的风机的整体流动性能得到了很大的提高,设计的高压离心式风机的效率得到了很大的提高。设计风机的瞬态计算为了后期计算风机内部的气动噪声,本文对离心风机内部流场采用瞬态的计算方法进行了数值计算。下面详细介绍风机的瞬态计算过程。高压离心式风机瞬态计算收敛性判断瞬态计算过程中,每一个时间步内相当于计算一个稳态过程。因此在每一个时间步内都需要保证计算达到收敛。因此,采用非结构化网格划分进气道上部,并对靠近壁面和叶片的网格进行加密。瞬态计算过程中存在内迭代的概念,内迭代与稳态求解的的迭代具有相同的原理。内迭代次数可以在模型树节点RunCalculation面板通过参数MaxIteration/TimeStep来设置。)
山东冠熙环保设备有限公司
姓名: 李海伟 先生
手机: 15684302892
业务 QQ: 3089959253
公司地址: 山东省临朐县223省道与南环路交叉口往南2公里路西
电话: 0536-3690068
传真: 0536-3690068