
德州防爆离心式风机常用解决方案“本信息长期有效”
防爆离心式风机在大流量区计算值比实测值偏高,小流量区计算值比实测值偏低,但是整体上计算结果与实测结果基本吻合。由效率曲线图可知,大流量区计算结果比实测结果偏高,小流量区计算结果比实测结果偏低,说明计算结果与实测结果吻合。通过实验值与计算值的对比,CFX软件的数值模拟结果与实测结果一致,由此验证了采用CFX软件对带进气箱的离心风机的数值模拟是可靠的。另外,有些管道补偿器如填料式补偿器、波形补偿器也可以起到减震作用。试验噪声分析离心风机的噪声按照流体动力声源的发声机制,分为三类:1)单极子,2)偶极子,3)四极子,风机正常工作状态下产生的噪声主要来源于偶极子源。根据GB/T2888-2008《风机和罗茨鼓风机噪声测量方法标准》对有无进气箱离心风机的噪声进行测试。试验地点:浙江上风高科专风实业有限公司CNAS检测中心;采用声级计对风机出口处的噪声进行测试,测试方式及仪器。加米字集流器风机进口静压明显高于普通集流器离心风机,其较大静压达到2510Pa,普通集流器达到1440Pa。测量时,除地面外无其他的反射条件,测点位置D距地面的高度与风机出口中心持平,水平方向上与出气口轴线成45°,距离出气口中心L=1m。防爆离心式风机的噪声在小流量区,带进气箱的离心风机噪声低于不带进气箱,随着流量的增加,带进气箱的风机噪声显著提高,在大流量区,明显的高于不带进气箱的噪声。1)防爆离心式风机在进气箱出口与叶轮进口处有涡旋产生,其位置与流量大小相关,涡旋的存在导致叶轮流道发生了堵塞,是离心风机效率降低的原因之一。2)加进气箱后,风机叶轮尾缘的“尾迹-射流”现象更加的严重,且在小流量区风机内部流场存在偏心现象。3)加进气箱后防爆离心式风机不仅效率有所降低,其全开流量与压力与无进气箱相比也有所下降,加进气箱后离心风机较优工况点向小流量区偏移,进气箱内部流场的复杂性以及出口速度的不均匀性对风机内部的流场分布产生了影响。4)相比于无进气箱的情况下,加进气箱后,风机随流量的增加,噪声提升的更快,且在大流量区明显高于不带进气箱的噪声。5)与实验测试结果对比分析,结果表明采用数值模拟研究风机性能是可行的。为了提高掘进工作面离心风机导流效果,提出对防爆离心式风机圆弧形集流器加米字支撑架改造。通过建立离心风机几何模型和数值模型,并施加边界条件,利用Fluent软件对加米字圆弧集流器和普通圆弧集流器离心风机进行了整机内部流场数值模拟,采用Tecplot软件进行后处理,显示同流量下离心风机的压力云图。工业生产中的防爆离心式风机特别是离心式风机应用很广泛,在一些生产装置中甚至属关键设备。本文以防爆离心式风机为研究对象,对4种组合方式的消声蜗壳进行了试验测量,研究了每一种组合的降噪效果及对风机气动性能的影响。试验在符合ISO3745标准的半消声室中进行,其四周墙壁及屋顶均装有消声尖劈,消声室截止频率100Hz,本底噪声为26dB(A)。试验装置和测试系统按照***标准GB/T1236-2000《工业通风机用标准化风道进行性能试验》和GB/T2888-91《防爆离心式风机和罗茨鼓风机噪声测量方法》的要求设计、制造、测试。先单独分析了进气箱内部流场特性,然后对进气箱与风机进行一体化分析,研究进气箱对离心风机性能的影响。防爆离心式风机进气口端连接符合GB/T1236规定的风机性能试验进气试验装置。使用智能压力风速风量仪测出PL3位置的静压和PL5处的流量压差,然后再根据其他测量的数据算出风机全压和静压试验装置。试验采用进口堵片方式调节流量,从大流量至小流量共选取8个工况点,分别测试每个工况点的风机流量、压力、功耗和噪声。***后计算风机标况下流量、全压、全压效率、总A声级。本试验风机的结构简图,在风机蜗板和前后盖板上可分别固定穿孔钢板,穿孔板与蜗壳本体之间形成10mm的空腔,空腔内填充超细玻璃棉,形成消声蜗壳。以此形成4种消声蜗壳组合:A组合,周向蜗板有消声层;B组合,蜗壳后盖板有消声层;C组合,周向蜗板和后盖板有消声层;D组合,周向蜗板和前盖板有消声层。把Pro/E建立的几何模型导入Fluent中并对几何模型的边界条件计算参数进行设定。选用的穿孔板采用板厚1mm,孔径6mm,穿孔率约为22%。各种加装吸声结构组合,风机蜗壳内部的通流结构尺寸和原风机一致。)