![](https://img3.dns4.cn/pic/275313/p9/20190725163239_0945_zs_sy.jpg)
秦皇岛一次风空预器信赖推荐,商顺设备
三维肋管的优势1、流体受到扩缩的振动:当流体沿轴向方向通过管道,分布在圆周方向上的肋片减小了流通面积,形成收缩段。而当流体流经无肋片段的管道时,流通面积回复正常,形成扩张段。由于从层流向湍流转变的转折雷诺数较低,可以在较低的流速下,使得高粘度流体达到换热系数较高的湍流区。这种交替的“扩张-收缩”,使流体产生脉动及振动,增加了流体的湍动度,强化了对流换热,并减少积灰。2、重复冲刷:非连续肋的设计,产生流体的脉动流动,使得流体在翻越肋片后,对肋片后的正常段(无肋的直管段)的壁面,形成反复冲刷,不仅仅***了层流底层,降低了热阻,同时,当流体在翻越肋片后,与远离壁面的流体混合,这使得流体近壁面温度梯度增加,增强了换热能力,并减少积灰。因此,准确地进行炉膛传热计算对于大型发电锅炉设计的成功与否十分重要。三维肋管单管结构特点1.1结构三维肋管是一种新型的管内(外)侧强化传热元件,是对表面有针状、鳞状肋片的各种强化换热管件的总称,其热力性能优于目前已广泛用于各类换热器的螺纹管、二维内肋及波纹管等[2~8]。只要管材壁厚不小于0.8mm,各种普通金属光管(包括铜、铝、不锈钢等)都可以通过专用机床加工成三维内肋管、外肋管或内-外肋管。目前,常用的翅片管束主要分为3类:单管外翅片管束,单根圆管外侧加装翅片所构成的翅片管束。三维内肋管结构示意见图1,各种三维肋管单管样品见图2。1.2传热机理三维肋管传热机理是,介质在流经翅高1~8mm、0.5mm×0.5mm的针状肋后形成卡曼涡街流动状态,这种流动促进了流体的湍流,三维肋的存在引起肋内加速,加速度的方向平行于热边界层,减少了边界层的厚度从而强化管内无相变传热。浮头式换热器的特点:浮头式换热器的一端管板固定在壳体与管箱之间,另一端管板可以在壳体内自由移动,这个特点在现场能看出来。由于液体在翅上表面张力减小,液体疏导容易,液膜厚度减薄,因而强化了冷凝传热。一般说来,三维肋管单相流体的对流传热系数可达光管的2.5~6倍,沸腾传热系数可达光管的2~5倍,冷凝传热系数可达光管的3~5倍。板翅式换热器在20世纪30年代,板翅式换热器首先在******用于发动机的散热,它的板束单元结构由翅片、隔板和封条三部分组成。强化管外冷凝膜系数较高可达光管的17倍(强化管内冷凝效果同样显著),强化管内冷凝膜系数可达光管的2~3倍,总传热系数至少提高35%,综合换热性能是其它强化换热元件不可比的。管壳式换热器管壳式换热器一般应用在一些大型设备上,材料一般以碳钢、不锈钢和铜为主。今天我们就来看一看管壳式换热器的强化传热技术是如何做的,希望能给我们制冷空调换热器技术一定的启发和借鉴。管壳式换热器的传热强化研究包括管程和壳程两侧的传热强化研究。通过强化传热管元件与优化壳程结构实现。强化传热管元件改变传热面的形状和在传热面上或传热流路径内设置各种形状的插入物。改变传热面的形状有多种,其中用于强化管程传热的有:螺旋槽纹管、横纹管、螺纹管、缩放管、旋流管和螺旋扁管等。传热波纹管波纹管强化编辑在能源、动力、化工、轻工、制冷等很多工业领域的换热设备中,经常采用波纹板表面以增加设备的强度及增强其传热传质性能。另外,也可采用扰流元件,在管内装入麻花铁,螺旋圈或金属丝片等填加物,亦可增强湍动,且有***层流底层的作用。)