实景三维-大势智慧(推荐商家)
企业视频展播,请点击播放视频作者:武汉大势智慧科技有限公司PCL(PointCloudLibrary)是在吸收了前人点云相关研究基础上建立起来的大型跨平台开源C++编程库,实景三维,它实现了大量点云相关的通用算法和gao效数据结构,涉及到点云获取、滤波、分割、配准、检索、特征提取、识别、追zong、曲面重建、可视化等。支持多种操作系统平台,可在Windows、Linux、Android、MacOSX、部分嵌入式实时系统上运行。PCL是一个模块化的C++模板库,其基于以下第三方库:Boost、Eigen、FLANN、VTK、CUDA、OpenNI、Qhull,实现点云相关的获取、滤波、分割、配准、检索、特征提取、识别、追zong、曲面重建、可视化等。大势智慧是一家专注于真实世界三维数字化重建及三维数据服务的高新技术企业,公司在城市高精度三维建模、模型应用及语义化理解和文化遗产数字化保护领域具有***的技术优势和丰富实践经验。三维重建的分类根据采集设备是否主动发射测量信号,分为两类:基于主动视觉理论和基于被动视觉的三维重建方法。主动视觉三维重建方法:主要包括结构光法和激光扫描法。被动视觉三维重建方法:被动视觉只使用摄像机采集三维场景得到其投影的二维图像,根据图像的纹理分布等信息***深度信息,进而实现三维重建。三维重建的步骤(1)图像获取:在进行图像处理之前,先要用摄像机获取三维物体的二维图像。光照条件、相机的几何特性等对后续的图像处理造成很大的影响。(2)摄像机标定:通过摄像机标定来建立有效的成像模型,求解出摄像机的内外参数,这样就可以结合图像的匹配结果得到空间中的三维点坐标,从而达到进行三维重建的目的。(3)特征提取:特征主要包括特征点、特征线和区域。大多数情况下都是以特征点为匹配基元,特征点以何种形式提取与用何种匹配策略紧密联系。因此在进行特征点的提取时需要先确定用哪种匹配方法。实景三维-大势智慧(推荐商家)由武汉大势智慧科技有限公司提供。实景三维-大势智慧(推荐商家)是武汉大势智慧科技有限公司今年新升级推出的,以上图片仅供参考,请您拨打本页面或图片上的联系电话,索取联系人:吴先生。)