液质用氮气发生器原理-日本液质用氮气发生器-日本东宇电机
膜空分制氮以空气为原料,在一定压力条件下,利用氧和氮等不同性质的气体在膜中具有不同的渗透速率来使氧和氮分离。和其它制氮设备相比它具有结构更为简单、体积更小、无切换阀门、维护量更少、产气更快(≤3分钟)、增容方便等优点,它特别适宜于氮气纯度≤98%的中、小型氮气用户,有功能价格比。而氮气纯度在98%以上时,它与相同规格的PSA制氮机相比价格要高出15%以上。钢瓶氮气需要向气体供应商购买,一般采用深冷分离法从空气中获得,液质用氮气发生器厂家,适合大规模工业制氮;氮气发生器的种类、原理和结构多种多样,从原理上来讲,一般分为三种,即:电解法、膜分离法,以及变压吸附(PSA)&碳分子筛法。一电解法制氮氮气发生器使用电解法制氮原理的氮气发生器,其主要特点就是仪器具有电解液储液桶其主要原理是:原料空气进入到电解池中,日本液质用氮气发生器,空气中的氧在阴极被附而获得电子,与水作用生成氢氧根离子并迁移到阳极,在阳极处失去电子析出氧气,因此空气中的氧不断被分离,只留下氮气随气路被输出。氮气发生器二膜分离法制氮利用膜(中空纤维膜)分离法制氮的基本原理是:当两种或两种以上的气体混合物通过中空纤维膜时,由于气体在膜中的溶解度和扩散系数有差异,因而这些气体在膜中的相对渗透率是不同的。当混合气体在驱动力(膜两侧压力差)作用下通过中空纤维膜时,渗透速率相对快的气体,如水、氢气、硫i化氢、二氧化碳等,快速透过膜进入膜的另一侧。一般而言,采用膜分离制氮得到的氮气纯度<99.9%,可以用在一般的常量分析之中。三变压吸附(PSA)&碳分子筛法制氮1变压吸附的原理氮气发生器变压吸附是用于分离混合气体,提取某一气体组分的技术,是指在系统温度维持不变的情况下,通过升高或降低系统的压力来不断地改变吸附剂的吸附量从而达到组分分离的方法;主要体现在较高压力下进行吸附,在较低压力下(常压或真空)使吸附的组分解吸出来,从而得到得到气体产物。2变压吸附用于氧氮分离实验室制氮过程中常使用分子筛作为变压吸附中的吸附剂,因此有的厂家称之为碳分子筛法。制氮的基本过程为:(1)在采用碳分子筛为吸附剂时,碳分子筛对氧氮的吸附速度相差很大。(2)氮气流出后,通过降低压力,液质用氮气发生器原理,分子筛表面上被吸附的氧分子等被解吸排出,从而吸附剂得以再生。制氮机制取的氮气有哪几种纯化方式氮是惰性气体,常用于高温处理各种材料或零件的保护气氛。为此,应把氮气中的杂质(氧和水汽)清除到i低水平。一般来说,由制氮机制取的氮气中含氧量小于0.5%时,宜采用脱氧剂直接除氧,含氧量为0.5-3%时,宜采用催化剂加氢除氧,含氧量大于3%时可采用分级催化除氧。因为氮气中含氧量过高,按化学计量所需的氢气量大,液质用氮气发生器报价,一次全部加入时,可能有爆i炸的***;且反应中放出的热量较大,易烧坏催化剂。因此,必须严格控制加氢量进行分级除氧。原料氮气中含氧量过高时,亦可用部分纯氮稀释原料气,使混合气体中含氧量小于3%再进行加氢催化除氧。采用脱氧剂清除杂质氧的典型工艺流程:氮气经催化除氧器(除去氧)、水冷却器和吸附干燥器(除去水汽)、气体过滤器(除去尘埃颗粒)后,即得纯氮产品。采用加氢催化除氧的典型工艺流程:首先在氮气中加适量氢气(添加量为氮气中含氧量的二倍以上),然后通过催化除氧器(除去氧)、水冷却器和吸附于燥器(除去水汽)、气体过滤器(除去尘埃粒)后,即得纯氮产品。当氮气中含氧量较大(大于3%),可采用分级加氢催化除氧工艺,氮气在进入催化除氧器前,需要严格控制加氢量,通过催化除氧器1(一次除氧),再加入少量氢气进入催化除氧器2进行二次除氧。如果原料氮气中含氧较高,对纯氮又要求不许有过量氢气存在。此时,氮气纯化装置采用先加氢催化除氧,再用活性氧化铜等除氢的方法纯化氮气,其典型的工艺流程为:在原料氮气中根据氧的含量,添加稍为过量的氢(按化学计量)后通过催化除氧器除氧,再通过电加热器和氧化反应除去氮气中的过量氢。常用的脱氢剂除活性氧化铜外,也可用银分子筛等。液质用氮气发生器原理-日本液质用氮气发生器-日本东宇电机由东宇电机股份有限公司提供。东宇电机股份有限公司是江苏苏州,行业设备的见证者,多年来,公司贯彻执行科学管理、创新发展、诚实守信的方针,满足客户需求。在东宇***携全体员工热情欢迎各界人士垂询洽谈,共创东宇更加美好的未来。)
东宇电机股份有限公司
姓名: 李颖 女士
手机: 15606228211
业务 QQ: 317012703
公司地址: 江苏省昆山市周市镇万达广场5号楼20层東宇电机
电话: 0512-50330547
传真: 0512-50330547