耐高温轴流风机-冠熙风机综合实力强-小型耐高温轴流风机
冷风通过耐高温轴流风机仓底通风口进入仓内,耐高温轴流风机,由下至上通过轴流风机出口排出仓外。粮堆由下向上依次冷却,冷却梯度和变化趋于平衡。由于进风口和出风口在同一壁面上,形成了由近风扇到远风扇的温度梯度。在同一平面上,当靠近挡谷网的谷物温度达到-10.0C时,远离风扇的谷物温度为-8.0C,比平均谷物温度高出2C。在耐高温轴流风机通风过程中,可逆转耐高温轴流风机,通过铺膜改变通风方向,可以有效地解决粮食温度梯度问题。针对特殊部位的冷却效果,采用风机型轴流风机的负压通风,各点气流均匀稳定。由于温差的存在,在晶粒温度较高的部位容易出现露水现象,且四角不易受外界低温影响,温度较高。在谷底温度变化过程中,耐高温轴流风机通风后谷底较低温度是由于与冷空气的密切接触,提高了通风冷却效果。从粮食上层的冷却效果来看,通风后温度高,主要是由于夏季粮食的储存。上层受温度升高和仓库温度升高的影响,以及积温升高的原因。粮堆中间层的温度梯度接近操作规程,说明干冷空气通过粮堆是均匀的。导叶数目减少时耐高温轴流风机效率明显高于导叶数目增加时的风机效率;在导叶数目减少的方案中,在qv<87.5m3/s时全压全部高于原风机,在高于此流量时提升效果仅方案二比原风机效率稍高,其余方案略低于原风机,在设计流量82.5m3/s时,方案三的效率提升效果好,提升比例为0.46个百分点;在流量低于设计流量时,方案四至六于原风机,高于设计流量时风机效率低于原风机,且随流量增大,效率下降速度加快。从性能比较上可以看出,小型耐高温轴流风机,方案三表现出优于原风机的性能,所以下文主要针对方案三和原风机进行流固耦合模拟研究。耐高温轴流风机轴功率Psh定义为单位时间内原动机传递给风机轴上的能量,其大小可反映耐高温轴流风机的能耗。因此导叶数目改造对于经济性的影响可通过轴功率来考察,图5为原风机和方案三轴功率比较。可以看出方案三比原风机轴功率有少许增加且变化不大,这也与方案三全压提升做功能力增强有密切关系。耐高温轴流风机静力结构特性在旋转机械中,叶片结构强度和振动直接关系到其安全运行,其取决于叶片表面的气动载荷和本身固有的力学性能。而仅对流体域进行研究还不能完全确定导叶数目变化是否对风机固体域产生影响,为此利用ANSYSWorkbench软件将流场压力数据加载到动叶片表面,对风机动叶进行了单向流固弱耦合,来研究导叶数目变动后动叶等效应力、总变形及振动的变化。耐高温轴流风机优化思路本模型采用Nelder-Mead的优化方法,用于非线性方程针对多目标的优化方法,能寻找到全局较小偏差,同时根据自变量的增加而线性增加计算负荷的大小。由于自变量的变化参数较多,为了避免出现非物理的优化结果,提高优化效率。本模型的优化将分为两个部分。耐高温轴流风机设计点的模型优化在设计点,风机内部流场状况较好,流动损失小,。因为Koch&***ith的模型考虑了诸多物理因素并被广泛验证了其合理性,不锈钢耐高温轴流风机,因此不予优化。有3个参数需要优化:参考冲角、参考落后角和二次流损失。在一维计算时,由于模型中的经验公式是从大量压气机的实验数据中提取出来的,针对某一特定的风机几何尺寸,首先需要对采用的损失和落后角模型进行校验和标定。标定是根据风机在转速990r/min时,耐高温轴流风机的安装角不变情况下的实验气动性能曲线。其次,利用优化得到的损失和落后角模型,对安装角分别为+10°、+5°、-10°、-5°的轴流风机的气动性能进行数值模拟并与实验结果进行对比分析,来验证本模型的准确性和可靠性。因为本风机并未给定相关设计点的参数,耐高温轴流风机模型中只能选取设计转速为990r/min下率点为设计点,选取实验的气动性能曲线做为优化对象。耐高温轴流风机-冠熙风机综合实力强-小型耐高温轴流风机由山东冠熙环保设备有限公司提供。山东冠熙环保设备有限公司实力不俗,信誉可靠,在山东潍坊的风机、排风设备等行业积累了大批忠诚的客户。山东冠熙带着精益求精的工作态度和不断的完善创新理念和您携手步入辉煌,共创美好未来!同时本公司还是从事除尘器风机,除尘设备风机,除尘风机的厂家,欢迎来电咨询。)
山东冠熙环保设备有限公司
姓名: 李海伟 先生
手机: 15684302892
业务 QQ: 3089959253
公司地址: 山东省临朐县223省道与南环路交叉口往南2公里路西
电话: 0536-3690068
传真: 0536-3690068