烘干风机-高温烘干风机-山东冠熙(推荐商家)
在采集到烘干风机的振动信号中,电机的水平振动和径向振动是整个风机严重的振动。在1159.86赫兹时,振动幅度大,与两级叶轮通过频率之和一致。高频频率是由于叶片在旋转过程中周期性地通过空气中固***置的压力波动引起的,等于叶片的旋转频率乘以叶片数。烘干风机叶片通过频率的计算公式为f=m.n/60,其中m为动叶片数,n为风机转速,风机两级叶片数为14和10,两级叶片通过频率分别为676.67hz、483.33hz,两个频率之和为1160hz。通过该频率时,叶片的振动加速度为2.0g,说明叶片与风机外壳的动、静干扰对气流波动影响较大。从轴向不同位置的振动来看,烘干风机进出口振动小。入口主振频率分别为47.27Hz和96.18Hz,分别为风机的基频和双频。入口流速为层流状态,振动为机械振动。出口处主要振动频率为189.91赫兹、1159.86赫兹、1351.40赫兹和2313.19赫兹,主要为风机基频的四倍和气流脉动引起的高频振动。入口的振动略强于出口的振动。级叶轮旋转加速后,烘干风机内部流场变得更加复杂,而第二级叶轮反向加速时,叶片迎角较大,气动力影响较大,通过第二级叶轮等流量后流场趋于稳定。一级叶轮的振动与电机的振动相似,主要是由复杂流场的气动力和风机基频的四、五倍频率振动引起的。二级叶轮高频宽带振动的振幅远大于风机基频机械振动的振幅。烘干风机优化思路本模型采用Nelder-Mead的优化方法,用于非线性方程针对多目标的优化方法,能寻找到全局较小偏差,同时根据自变量的增加而线性增加计算负荷的大小。由于自变量的变化参数较多,为了避免出现非物理的优化结果,山东烘干风机,提高优化效率。本模型的优化将分为两个部分。烘干风机设计点的模型优化在设计点,风机内部流场状况较好,高温烘干风机,流动损失小,。因为Koch&***ith的模型考虑了诸多物理因素并被广泛验证了其合理性,因此不予优化。有3个参数需要优化:参考冲角、参考落后角和二次流损失。在一维计算时,由于模型中的经验公式是从大量压气机的实验数据中提取出来的,针对某一特定的风机几何尺寸,***烘干风机,首先需要对采用的损失和落后角模型进行校验和标定。标定是根据风机在转速990r/min时,烘干风机的安装角不变情况下的实验气动性能曲线。其次,利用优化得到的损失和落后角模型,对安装角分别为+10°、+5°、-10°、-5°的轴流风机的气动性能进行数值模拟并与实验结果进行对比分析,来验证本模型的准确性和可靠性。因为本风机并未给定相关设计点的参数,烘干风机,烘干风机模型中只能选取设计转速为990r/min下率点为设计点,选取实验的气动性能曲线做为优化对象。比较两种叶轮的振动模态,可以看出,每种叶片的低阶模态都表现出从叶片顶部到根部的弯曲变形,高阶模态是叶片两侧的扭转变形。烘干风机叶轮各级的形状变形和较大变形都在叶片顶部,叶片角度可调的叶轮的叶片变形相对较大,因为其材质为尼龙66,刚度小于Q235,更容易变形。叶片角固定叶轮的叶根与轮毂固定,因此叶根与轮毂相对稳定,基本无变形。由于叶片角度可调叶轮增加了角度调节机构,使得叶根弯曲变形和扭转变形较小。烘干风机实验采用了力锤激励、加速度传感器采集信号、LMS数据采集与处理等方法。该测试的主要过程包括:支持被测对象、选择激励方案、布置传感器、确定输入通道、建立测试模型和与通道相关、确定分析带宽、测量和保存数据。由于轮毂变形基本为0,烘干风机叶轮通过柔性弹性绳悬挂在轮毂上进行测量。振动方式选择力锤激振,固定锤击点,移动传感器测量。由于叶片的明显变形,每个叶片顶部和根部有两个测量点,叶片下方轮毂有一个测量点,每个叶轮有50个测量点。建立合适的圆柱坐标系,测量各测点的相对坐标,建立测试模型。传感器布置完毕后,测试通道与模型中相应的测量点相关联。通过力锤激励收集数据。同样的方法依次测量每个叶轮的50个测量点。在PolyMax输入模块中选择已有的fr集,在高层稳态图中选择符号较多的列,即阻尼频率、频率和模向量稳定性。烘干风机-高温烘干风机-山东冠熙(推荐商家)由山东冠熙环保设备有限公司提供。山东冠熙环保设备有限公司在风机、排风设备这一领域倾注了诸多的热忱和热情,山东冠熙一直以客户为中心、为客户创造价值的理念、以品质、服务来赢得市场,衷心希望能与社会各界合作,共创成功,共创辉煌。相关业务欢迎垂询,联系人:李海伟。同时本公司还是从事离心鼓风机,离心通风机,离心风机的厂家,欢迎来电咨询。)