烘干风机-冠熙风机 质量可靠-木材烘干风机
在采集到烘干风机的振动信号中,电机的水平振动和径向振动是整个风机严重的振动。在1159.86赫兹时,振动幅度大,与两级叶轮通过频率之和一致。高频频率是由于叶片在旋转过程中周期性地通过空气中固***置的压力波动引起的,木材烘干风机,等于叶片的旋转频率乘以叶片数。烘干风机叶片通过频率的计算公式为f=m.n/60,其中m为动叶片数,n为风机转速,风机两级叶片数为14和10,两级叶片通过频率分别为676.67hz、483.33hz,两个频率之和为1160hz。通过该频率时,叶片的振动加速度为2.0g,说明叶片与风机外壳的动、静干扰对气流波动影响较大。从轴向不同位置的振动来看,烘干风机进出口振动小。入口主振频率分别为47.27Hz和96.18Hz,分别为风机的基频和双频。入口流速为层流状态,振动为机械振动。出口处主要振动频率为189.91赫兹、1159.86赫兹、1351.40赫兹和2313.19赫兹,主要为风机基频的四倍和气流脉动引起的高频振动。入口的振动略强于出口的振动。级叶轮旋转加速后,烘干风机内部流场变得更加复杂,而第二级叶轮反向加速时,叶片迎角较大,气动力影响较大,通过第二级叶轮等流量后流场趋于稳定。一级叶轮的振动与电机的振动相似,主要是由复杂流场的气动力和风机基频的四、五倍频率振动引起的。二级叶轮高频宽带振动的振幅远大于风机基频机械振动的振幅。根据,烘干风机标准控制在V<4.6mm/s,电厂运行报警值设置为V<7.1mm/s,跳闸值设置为V<11mm/s,若担心仪表信号失真导致误跳闸,可设置二选二跳闸。测量振动位置可分为三个方向:水平方向、垂直方向和轴向。轴流风机壳体的中表面也是如此,这也是本标准允许的。对于运行中的风机,解决振动问题的关键是找到振动源。通常,在测量水平、垂直和轴向位置的较大振动位置时,应考虑到振动源。水平振动:可考虑轴承、转子平衡、气流发生和轴偏移引起的振动。烘干风机垂直振动:可考虑产生风扇的基础,上下连接螺栓,风扇的固定部分引起振动。轴向振动:可考虑中间联轴器弹簧受拉或受压引起的振动和轴承座轴向间隙。实际运行中,现场操作人员发现风机振动较大。他们首先想到的是平衡问题。无论振动源如何,就地平衡风机都是错误的。风机振动不平衡。为了找出振动超标的原因,首先要对振动源进行分析,然后采取适当的措施,有效地解决大振动问题。烘干风机运行时轴承温度。轴承温度是衡量风机安全运行的一个指标,因为烘干风机使用的轴承是进口的,如FAG或SKF。一般情况下,高温烘干风机,警报设置为90,跳闸设置为110C。轴承温度主要通过温升的变化来测量。风机运行时温升一般在20℃左右,温升控制在40℃以内,山东烘干风机,。烘干风机降噪原理和穿孔模型降噪原理在风机运行过程中,产生的主要噪声是机械噪声和空气动力噪声。其中,烘干风机机械噪声主要包括电机噪声、结构振动噪声等。优化结构以降低机械噪声是必要的。空气动力噪声按产生原因可分为旋转噪声和涡流噪声。旋转噪声是由叶片与气流相互作用引起的压力波动引起的。它也被称为离散噪声或叶片通过频率噪声。产生涡流噪声的主要原因是由于阻力引起的叶片边界层涡流、随主流沿叶片后缘脱落的涡流和叶尖放电。烘干风机叶片穿孔减噪是应用穿孔射流***非工作面涡流和分离的原理。当边界层流体的动能能够克服叶片表面的摩擦力时,叶片表面可能形成回流。回流被主流气体带走,导致涡流脱落。涡流以噪声的形式不断地产生和释放出大量的能量。当叶片穿孔时,烘干风机,部分叶片工作面气流流向非工作面,非工作面气流获得更多动能,克服叶片表面的摩擦,***涡流的产生和脱落。烘干风机-冠熙风机质量可靠-木材烘干风机由山东冠熙环保设备有限公司提供。行路致远,砥砺前行。山东冠熙环保设备有限公司致力成为与您共赢、共生、共同前行的战略伙伴,更矢志成为风机、排风设备具有竞争力的企业,与您一起飞跃,共同成功!同时本公司还是从事高压离心风机,高温离心风机,离心风机厂家的厂家,欢迎来电咨询。)
山东冠熙环保设备有限公司
姓名: 李海伟 先生
手机: 15684302892
业务 QQ: 3089959253
公司地址: 山东省临朐县223省道与南环路交叉口往南2公里路西
电话: 0536-3690068
传真: 0536-3690068