风机-冠熙风机 质量可靠-耐高温轴流排风机
本文以方案机的定子叶片为例进行了详细设计,优化了S1流面叶型,风机采用三维叶片技术改善了定子叶栅内的流动。通过三维数值模拟,对S2流面设计中的损失和滞后角模型进行了标定,为叶片三维建模提供了依据。通过与初步三维设计结果的比较,两种设计方案的气动参数径向分布一致,证实了风机设计过程中S2流面设计的准确性和可靠性。由于叶尖泄漏流的存在,叶尖压力比与气流角(图中***虚拟线圈所示的面积)之间存在一定的偏差,但通过三维CFD的修正,s2的设计趋势预测了叶尖泄漏流对气动参数径向分布的影响;bec在高负荷下,定子根部出现了气流分离现象,导致了出口气流角和S2设置的初步三维设计。预测结果略有不同(图中橙色虚线圈所示的区域)。风机利用一条非均匀有理B-sline曲线来描述由四个控制点(红点)控制的曲线,包括前缘点和后缘点。叶片体由四条非均匀曲面、两个吸力面和两个压力面组成,同时与较大切圆(灰圆)和前缘后缘椭圆弧相切。利用MITMISES程序对S1型拖缆叶片进行了流场分析。采用B-L(Baldwin-Lomax)湍流模型和AGS(Abu-Ghamman-Shaw)旁路过渡模型描述了过渡过程。介绍了一套高负荷风机的气动设计过程,包括参数选择、叶片形状优化和三维叶片的设计思想。在此基础上,完成了高负荷轴流风机压力比1.20的初步设计,负荷系数高达0.83。其次,在初步设计方案中,通过对风机静叶多叶高处S1流面剖面的协调优化,耐高温轴流排风机,有效地减少了静叶损失,烘干机配套风机,提高了风机的裕度。同时,采用三维叶片技术,提高了定子叶片的端部流动,提高了定子叶片端部区域的工作能力。风机裕度由27.1%扩大到48.8%。优化叶顶间隙形状可以有效地提高轴流风机的性能。采用FLUENT软件对OB-84动叶可调轴流风机在均匀和非均匀间隙下的性能进行了数值模拟,讨论了不同间隙形状对泄漏流场和间隙损失分布的影响。结果表明,在平均叶顶间隙不变的前提下,锥形间隙风机的总压力和于均匀间隙风机,区范围扩大,锥形间隙越大,性能改善越显著;锥形间隙改变了间隙内涡量场的分布,减少了叶尖泄漏损失,增强了风机叶片上、中部的功能力。风机的性能低于均匀间隙的性能。锥形叶片的叶尖间隙形状可以作为提高风机性能的重要手段。根据以往对风机亚音速定子叶片的研究,前缘弯曲用于匹配迎角[20],根部弯曲高度为20%,端部弯曲角度为20,顶部弯曲高度为30%,端部弯曲角度为40,如图18左侧所示。弯曲高度和弯曲角度的选择是基于流入流的流动角度条件:如图5中蓝色箭头所示,定子叶片的流入角度受上游动叶片的影响,靠近端壁有两个不符合主流分布趋势的区域,而弯曲高度末端弯板的T应覆盖与流动角度匹配的区域;末端弯板角度的选择基于区域和主流流动角度之间的差异。根据前面的研究,风机前缘弯曲的定子叶片可以有效地消除流入攻角,但叶片的局部端部弯曲会导致叶片局部反向弯曲的形状效应。在保证端部攻角减小的同时,定子叶片端部的阻塞量增大,干燥炉风机,损失增大。在端部弯曲建模的基础上,适当叠加叶片正弯曲建模,可以减小端部攻角,保证定子叶片和级间的有效流动。通过实验设计的方法,得到了合适的前弯参数:风机弯曲高度60%,轮毂弯曲角度40,翼缘弯曲角度20,基本符合以往研究得出的弯曲叶片设计参数选择规则。不同叶栅的吸力面径向压力梯度和出口段边界层边界的径向压力梯度可以很好地进行比较。在带端弯和正弯叶片的三维复合叶片表面,存在两个明显的径向压力梯度增大区域,风机,形成从端弯到流道中径的径向力,引导风机叶片表面边界层的径向重排。从出口段附面层的边界形状可以看出,复合三维叶片试图使叶片的径向附面层均匀化,消除了叶片角部区域的低能流体积聚,对提高叶片边缘起到了明显的作用。风机-冠熙风机质量可靠-耐高温轴流排风机由山东冠熙环保设备有限公司提供。行路致远,砥砺前行。山东冠熙环保设备有限公司致力成为与您共赢、共生、共同前行的战略伙伴,更矢志成为风机、排风设备具有竞争力的企业,与您一起飞跃,共同成功!同时本公司还是从事除尘器风机,除尘设备风机,除尘风机的厂家,欢迎来电咨询。)
山东冠熙环保设备有限公司
姓名: 李海伟 先生
手机: 15684302892
业务 QQ: 3089959253
公司地址: 山东省临朐县223省道与南环路交叉口往南2公里路西
电话: 0536-3690068
传真: 0536-3690068